Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96280 by bobhans last updated on 31/May/20

Commented by bemath last updated on 31/May/20

let w = arctan x  dw = (dx/(1+x^2 )) ⇒ ∫ w dw = [(1/2)w^2  ]_0 ^(π/2)   = (1/2)((π/2))^2 = (π^2 /8) .

letw=arctanxdw=dx1+x2wdw=[12w2]0π2=12(π2)2=π28.

Answered by 675480065 last updated on 31/May/20

let u=arctanx  ⇒tanu=x  ⇒sec^2 udu=dx  ⇒(1+tan^2 u)du=dx  {but tanu=x}  ⇒(1+x^2 )du=dx  ⇒∫_0 ^∞ (((arctanx)/(x^2 +1)))dx=∫_(0 ) ^∞ ((((x^2 +1)udu)/(x^2 +1)))  =∫_0 ^∞ udu  [((tan^(−2) x)/2)]_0 ^∞ =(π^2 /8)

letu=arctanxtanu=xsec2udu=dx(1+tan2u)du=dx{buttanu=x}(1+x2)du=dx0(arctanxx2+1)dx=0((x2+1)udux2+1)=0udu[tan2x2]0=π28

Commented by bobhans last updated on 31/May/20

good. thank you

good.thankyou

Answered by mathmax by abdo last updated on 31/May/20

A =∫_0 ^∞   ((arctan(x))/(x^2  +1))dx   by parts u^′  =(1/(x^2  +1)) and v=arctanx  A =[arctan^2 x]_0 ^∞ −∫_0 ^∞  ((arctanx)/(1+x^2 ))dx =(π^2 /4) −A ⇒2A =(π^2 /4) ⇒A =(π^2 /8)

A=0arctan(x)x2+1dxbypartsu=1x2+1andv=arctanxA=[arctan2x]00arctanx1+x2dx=π24A2A=π24A=π28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com