Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96898 by bobhans last updated on 05/Jun/20

Commented by PRITHWISH SEN 2 last updated on 05/Jun/20

(1/6)∫{(√(x^2 +6x)) +x}dx=(1/6)∫(√((x+3)^2 −9)) dx +(1/6)∫xdx  =(((x+3))/(12))(√(x^2 +6x)) −(3/4)ln∣(x+3)+(√(x^2 +6x))∣+(x^2 /(12)) +C

16{x2+6x+x}dx=16(x+3)29dx+16xdx=(x+3)12x2+6x34ln(x+3)+x2+6x+x212+C

Answered by john santu last updated on 05/Jun/20

I = ∫ (((√x)  dx)/((√x)((√(1+(6/x)))−1)))  I = ∫ (dx/((√(1+(6/x)))−1))  set z^2 =1+(6/x) then x = (6/(z^2 −1))  dx = ((−12z)/((z^2 −1)^2 )) dz  I = ∫ (1/(1−z)) . (((−12z)/((z^2 −1)^2 )) dz   I = ∫ ((12z  dz)/((z−1)(z^2 −1)^2 )) = ∫ ((12z dz)/((z−1)^2 (z+1)))  I = ∫ ((3 dz)/(2(z−1))) + ∫ ((6 dz)/((z−1)^2 )) −∫(( 9 dz)/(2(z+1)))  I =(3/2)ln ∣z−1∣ −(6/(z−1)) −(9/2)ln ∣z+1∣ + c   I= (3/2)ln ∣(√((x+6)/x))−1∣ − ((6(√x))/(√(x+6))) −(9/2)ln ∣(√((x+6)/x))+1∣ + c

I=xdxx(1+6x1)I=dx1+6x1setz2=1+6xthenx=6z21dx=12z(z21)2dzI=11z.(12z(z21)2dzI=12zdz(z1)(z21)2=12zdz(z1)2(z+1)I=3dz2(z1)+6dz(z1)29dz2(z+1)I=32lnz16z192lnz+1+cI=32lnx+6x16xx+692lnx+6x+1+c

Answered by Sourav mridha last updated on 05/Jun/20

=(1/6)[∫(√(x^2 +6x)) +(1/2)x^2 ]  =(1/6)[∫(√((x+3)^2 −3^2 ))d(x+3)]+(1/(12))x^2   =(1/6)[(((x+3))/2).(√(x^2 +6x))                    −(9/2)ln[(x+3)+(√(x^2 +6x))]               +(1/(12))x^2 +c

=16[x2+6x+12x2]=16[(x+3)232d(x+3)]+112x2=16[(x+3)2.x2+6x92ln[(x+3)+x2+6x]+112x2+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com