All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96898 by bobhans last updated on 05/Jun/20
Commented by PRITHWISH SEN 2 last updated on 05/Jun/20
16∫{x2+6x+x}dx=16∫(x+3)2−9dx+16∫xdx=(x+3)12x2+6x−34ln∣(x+3)+x2+6x∣+x212+C
Answered by john santu last updated on 05/Jun/20
I=∫xdxx(1+6x−1)I=∫dx1+6x−1setz2=1+6xthenx=6z2−1dx=−12z(z2−1)2dzI=∫11−z.(−12z(z2−1)2dzI=∫12zdz(z−1)(z2−1)2=∫12zdz(z−1)2(z+1)I=∫3dz2(z−1)+∫6dz(z−1)2−∫9dz2(z+1)I=32ln∣z−1∣−6z−1−92ln∣z+1∣+cI=32ln∣x+6x−1∣−6xx+6−92ln∣x+6x+1∣+c
Answered by Sourav mridha last updated on 05/Jun/20
=16[∫x2+6x+12x2]=16[∫(x+3)2−32d(x+3)]+112x2=16[(x+3)2.x2+6x−92ln[(x+3)+x2+6x]+112x2+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com