Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97153 by eidmarie last updated on 06/Jun/20

Answered by MJS last updated on 06/Jun/20

−∫((x^3 −x^2 −2x−13)/((x+1)(x^2 −x+3)))dx=  =−∫dx+((13)/5)∫(dx/(x+1))−(1/5)∫((8x−41)/(x^2 −x+3))dx=  =−x+((13)/5)ln ∣x+1∣ −(4/5)∫((2x−1)/(x^2 −x+3))dx+((37)/5)∫(dx/(x^2 −x+3))=  =−x+((13)/5)ln ∣x+1∣ −(4/5)ln (x^2 −x+3) +((74(√(11)))/(55))arctan (((√(11))(2x−1))/(11)) +C  now insert borders

x3x22x13(x+1)(x2x+3)dx==dx+135dxx+1158x41x2x+3dx==x+135lnx+1452x1x2x+3dx+375dxx2x+3==x+135lnx+145ln(x2x+3)+741155arctan11(2x1)11+Cnowinsertborders

Answered by mathmax by abdo last updated on 06/Jun/20

A=∫_(−3) ^0  ((−x^3  +x^2  +2x+13)/(x^3  +2x+3))dx changement x=−t give  A =∫_0 ^3  ((t^3 +t^2 −2t+13)/(−t^3 −2t +3))dt =−∫_0 ^3  ((t^3 +t^2 −2t +13)/(t^3  +2t−3))dt  A =−∫_0 ^3  ((t^3  +2t−3 −2t+3+t^2 −2t +13)/(t^3  +2t−3))dt  =−3 −∫_0 ^3  ((t^2 −4t +16)/(t^3  +2t−3))dt   we have 1 is root of p(t)=t^3  +2t −3  t^3  +2t−3 =t^3 −1 +2t−2 =(t−1)(t^2  +t+1)+2(t−1)  =(t−1)(t^2  +t +3) let decompose F(t) =((t^2 −4t +16)/((t−1)(t^2 +t +3)))  =(a/(t−1)) +((bt+c)/(t^2 +t+3))  a =((13)/5)  ,lim_(t→+∞) tF(t) =1 =a+b ⇒b=1−((13)/5) =−(8/5)  F(0) =−((16)/3) =−a +c ⇒c=a−((16)/3) =((13)/5)−((16)/3) =((39−80)/(15)) =−((41)/(15)) ⇒  F(t) =((13)/(5(t−1))) +((−(8/5)t−((41)/(15)))/(t^2  +t+3))  ⇒∫ F(t)dt =((13)/5)ln∣t−1∣−(8/(10)) ∫  ((2t+1−1)/(t^2  +t+3))dt  −((41)/(15)) ∫ (dt/(t^2 +t+3)) now its eazy to solve....

A=30x3+x2+2x+13x3+2x+3dxchangementx=tgiveA=03t3+t22t+13t32t+3dt=03t3+t22t+13t3+2t3dtA=03t3+2t32t+3+t22t+13t3+2t3dt=303t24t+16t3+2t3dtwehave1isrootofp(t)=t3+2t3t3+2t3=t31+2t2=(t1)(t2+t+1)+2(t1)=(t1)(t2+t+3)letdecomposeF(t)=t24t+16(t1)(t2+t+3)=at1+bt+ct2+t+3a=135,limt+tF(t)=1=a+bb=1135=85F(0)=163=a+cc=a163=135163=398015=4115F(t)=135(t1)+85t4115t2+t+3F(t)dt=135lnt18102t+11t2+t+3dt4115dtt2+t+3nowitseazytosolve....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com