Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 9880 by sandipkd@ last updated on 12/Jan/17

Answered by bansal22luvi@gmail.com last updated on 12/Jan/17

let the radius of smallest circle be r  CO=(2−x)  C_1 O=(1+x)  C_1 C=1  In ΔOCC_1   CO^2 +CC_1 ^2 =C_1 O^2   (2−x)^2 +1=(1+x)^2   ov solving the equation  x=(2/3)  kush

lettheradiusofsmallestcircleberCO=(2x)C1O=(1+x)C1C=1InΔOCC1CO2+CC12=C1O2(2x)2+1=(1+x)2ovsolvingtheequationx=23kush

Answered by mrW1 last updated on 12/Jan/17

C_1 O=1+x  CO=2−x  C_1 O^2 =C_1 C^2 +CO^2   (1+x)^2 =1^2 +(2−x)^2   1+2x+x^2 =1+4−4x+x^2   6x=4  x=(2/3)  ⇒Answer (3) is correct.

C1O=1+xCO=2xC1O2=C1C2+CO2(1+x)2=12+(2x)21+2x+x2=1+44x+x26x=4x=23Answer(3)iscorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com