Question and Answers Forum

All Questions   Topic List

Relation and FunctionsQuestion and Answers: Page 1

Question Number 218673    Answers: 3   Comments: 1

Question Number 218311    Answers: 1   Comments: 0

Question Number 218256    Answers: 2   Comments: 0

Question Number 217725    Answers: 0   Comments: 2

Question Number 216077    Answers: 1   Comments: 0

Find the largest value of the non negative integer p for which lim_(x→1) {((− px + sin(x − 1) + p)/(x + sin(x − 1) − 1))}^((1 − x)/(1 − (√x))) = (1/4) .

Findthelargestvalueofthenonnegativeintegerpforwhichlimx1{px+sin(x1)+px+sin(x1)1}1x1x=14.

Question Number 215887    Answers: 0   Comments: 2

Question Number 215331    Answers: 1   Comments: 0

Question Number 214644    Answers: 1   Comments: 0

((−6)/7)/((−7)/6)

67/76

Question Number 213291    Answers: 1   Comments: 0

Find domain of y_(213291) : y_(213291) =((3+e^((x^2 −3x+2)/(x−6)) )/(log_(3/4) (√(x^2 −(1/4)))))

Finddomainofy213291:y213291=3+ex23x+2x6log34x214

Question Number 212518    Answers: 2   Comments: 0

Question Number 209707    Answers: 0   Comments: 0

a,b ∈C : ab^− + b = 0 f : z′ = az^− + b such that f(M) = M′ 1. let z_A = z and z_(A′) = z′ and f(A) = A show that 2Re(b^− z) = bb^− (A is the set of invariant points and describes a line (△) ) 2. Deduce that (△) is a line with gradient u^( →) with affix z_u^→ = ib 3. show that (z_(MM ′) /z_u ) = ((bb^− − 2Re(bz^− ))/(ibb^− )) 4. show that 2Re(b^− z_0 ) = bb^_ where z_0 = ((z + z ′)/2) 5. Deduce that for M ∉ (△) , M is a perpendicular bisector of [MM ′]

a,bC:ab+b=0f:z=az+bsuchthatf(M)=M1.letzA=zandzA=zandf(A)=Ashowthat2Re(bz)=bb(Aisthesetofinvariantpointsanddescribesaline())2.Deducethat()isalinewithgradientuwithaffixzu=ib3.showthatzMMzu=bb2Re(bz)ibb4.showthat2Re(bz0)=bb_wherez0=z+z25.DeducethatforM(),Misaperpendicularbisectorof[MM]

Question Number 208533    Answers: 2   Comments: 0

z′ = (1/2)(z+(1/z)) z and z′ are complex numbers show that z = 2e^(iθ) show that M′ describes a conic section

z=12(z+1z)zandzarecomplexnumbersshowthatz=2eiθshowthatMdescribesaconicsection

Question Number 208431    Answers: 2   Comments: 0

h_a (x) = e^(−x) + ax^2 show that h_a admits a minimum in R

ha(x)=ex+ax2showthathaadmitsaminimuminR

Question Number 208418    Answers: 1   Comments: 0

u_(n+1) = u_n −u_n ^3 ; u_0 ∈ ]0, 1[ . show that u_n ∈ ]0, 1[ . show that u_n converges to 0 v_n = (1/u_(n+1) ^2 ) − (1/u_n ^2 ) . express v_n interms of u_n . show that v_n converges to 2 f(x) = ((2−x)/((1−x)^2 )) . show that f is increasing and deduce that v_n is decreasing . show that v_n ≥ 2

un+1=unun3;u0]0,1[.showthatun]0,1[.showthatunconvergesto0vn=1un+121un2.expressvnintermsofun.showthatvnconvergesto2f(x)=2x(1x)2.showthatfisincreasinganddeducethatvnisdecreasing.showthatvn2

Question Number 208103    Answers: 1   Comments: 0

Find inf{(m/n) ∣ m, n ∈ N, m<n−2}

Findinf{mnm,nN,m<n2}

Question Number 207390    Answers: 0   Comments: 1

Question Number 207314    Answers: 1   Comments: 0

let f:R→R be a continuous function then show that (1) if f(x) = f(x^2 ) ∀ x ∈R then f is a constant function (2) if f(x) = f(2x+1) ∀x∈R then f is a constant function

letf:RRbeacontinuousfunctionthenshowthat(1)iff(x)=f(x2)xRthenfisaconstantfunction(2)iff(x)=f(2x+1)xRthenfisaconstantfunction

Question Number 207085    Answers: 2   Comments: 0

Let f be a function with the following properties: (i) f(1) =1 (ii) f(2n)=n.f(n) for any positive integer n. Find the value of f(2^(10) ) a)1 b) 2^(10 ) c) 2^(35) d) 2^(45)

Letfbeafunctionwiththefollowingproperties:(i)f(1)=1(ii)f(2n)=n.f(n)foranypositiveintegern.Findthevalueoff(210)a)1b)210c)235d)245

Question Number 206993    Answers: 1   Comments: 0

If the nth term of a sequence is given by ((n^2 −2n)/4) ,what is the sum of n terms of the sequence?

Ifthenthtermofasequenceisgivenbyn22n4,whatisthesumofntermsofthesequence?

Question Number 206442    Answers: 1   Comments: 0

Question Number 206151    Answers: 1   Comments: 0

Question Number 206136    Answers: 1   Comments: 0

Question Number 205919    Answers: 1   Comments: 0

write the following recursive function in explicit form f(1)=1 f(n+1)=(n+1)f(n)+n!

writethefollowingrecursivefunctioninexplicitformf(1)=1f(n+1)=(n+1)f(n)+n!

Question Number 205262    Answers: 1   Comments: 0

nature of the serie Σ_(n≥1) ((ln(n))/n)

natureoftheserien1ln(n)n

Question Number 204478    Answers: 1   Comments: 0

soit f: R^3 →R^3 f(x,y,z)=(x+y,2x−y,x+z) •1 Ecrire la matrice M de cette application dans la base canonique B de R^3 •2 Calculer f(1,2,3)de 2 manieres differentes −en utilisant la definition de f −en utilisant la matrice M •3 determiner bsse de Ker( f) et de Im(f) •4 soient v_1 =(1,1,0) v_2 =(1,2,1) v_3 =(1,3,1) Montrer que la famille E=(v_1 , v_2 , v_3 )est une base de R^3 •5Calculer f(v_1 ) donner ses coordonnes(locus) dans bass E avec f(v_2 )=v_1 +6v_2 −4v_3 f(v_3 )=2v_1 +8v_2 −6v_3 •6 Ecrire la matrice N de f dans base F •7 Retrouver cette matrice a partir de M en utilisant la formule de changement de base

soitf:R3R3f(x,y,z)=(x+y,2xy,x+z)1EcrirelamatriceMdecetteapplicationdanslabasecanoniqueBdeR32Calculerf(1,2,3)de2manieresdifferentesenutilisantladefinitiondefenutilisantlamatriceM3determinerbssedeKer(f)etdeIm(f)4soientv1=(1,1,0)v2=(1,2,1)v3=(1,3,1)MontrerquelafamilleE=(v1,v2,v3)estunebasedeR35Calculerf(v1)donnersescoordonnes(locus)dansbassEavecf(v2)=v1+6v24v3f(v3)=2v1+8v26v36EcrirelamatriceNdefdansbaseF7RetrouvercettematriceapartirdeMenutilisantlaformuledechangementdebase

Question Number 204426    Answers: 1   Comments: 0

let a , b >0 find all differentiable function f:(0,∞)→(0,∞) such that f′((a/x)) = ((bx)/(f(x))) , ∀ x>0

leta,b>0findalldifferentiablefunctionf:(0,)(0,)suchthatf(ax)=bxf(x),x>0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com