Question and Answers Forum |
Relation and FunctionsQuestion and Answers: Page 1 |
![]() |
![]() |
![]() |
![]() |
Find the largest value of the non negative integer p for which lim_(x→1) {((− px + sin(x − 1) + p)/(x + sin(x − 1) − 1))}^((1 − x)/(1 − (√x))) = (1/4) . |
![]() |
![]() |
((−6)/7)/((−7)/6) |
Find domain of y_(213291) : y_(213291) =((3+e^((x^2 −3x+2)/(x−6)) )/(log_(3/4) (√(x^2 −(1/4))))) |
⇃ |
a,b ∈C : ab^− + b = 0 f : z′ = az^− + b such that f(M) = M′ 1. let z_A = z and z_(A′) = z′ and f(A) = A show that 2Re(b^− z) = bb^− (A is the set of invariant points and describes a line (△) ) 2. Deduce that (△) is a line with gradient u^( →) with affix z_u^→ = ib 3. show that (z_(MM ′) /z_u ) = ((bb^− − 2Re(bz^− ))/(ibb^− )) 4. show that 2Re(b^− z_0 ) = bb^_ where z_0 = ((z + z ′)/2) 5. Deduce that for M ∉ (△) , M is a perpendicular bisector of [MM ′] |
z′ = (1/2)(z+(1/z)) z and z′ are complex numbers show that z = 2e^(iθ) show that M′ describes a conic section |
h_a (x) = e^(−x) + ax^2 show that h_a admits a minimum in R |
u_(n+1) = u_n −u_n ^3 ; u_0 ∈ ]0, 1[ . show that u_n ∈ ]0, 1[ . show that u_n converges to 0 v_n = (1/u_(n+1) ^2 ) − (1/u_n ^2 ) . express v_n interms of u_n . show that v_n converges to 2 f(x) = ((2−x)/((1−x)^2 )) . show that f is increasing and deduce that v_n is decreasing . show that v_n ≥ 2 |
Find inf{(m/n) ∣ m, n ∈ N, m<n−2} |
![]() |
let f:R→R be a continuous function then show that (1) if f(x) = f(x^2 ) ∀ x ∈R then f is a constant function (2) if f(x) = f(2x+1) ∀x∈R then f is a constant function |
Let f be a function with the following properties: (i) f(1) =1 (ii) f(2n)=n.f(n) for any positive integer n. Find the value of f(2^(10) ) a)1 b) 2^(10 ) c) 2^(35) d) 2^(45) |
If the nth term of a sequence is given by ((n^2 −2n)/4) ,what is the sum of n terms of the sequence? |
![]() |
![]() |
![]() |
write the following recursive function in explicit form f(1)=1 f(n+1)=(n+1)f(n)+n! |
nature of the serie Σ_(n≥1) ((ln(n))/n) |
soit f: R^3 →R^3 f(x,y,z)=(x+y,2x−y,x+z) •1 Ecrire la matrice M de cette application dans la base canonique B de R^3 •2 Calculer f(1,2,3)de 2 manieres differentes −en utilisant la definition de f −en utilisant la matrice M •3 determiner bsse de Ker( f) et de Im(f) •4 soient v_1 =(1,1,0) v_2 =(1,2,1) v_3 =(1,3,1) Montrer que la famille E=(v_1 , v_2 , v_3 )est une base de R^3 •5Calculer f(v_1 ) donner ses coordonnes(locus) dans bass E avec f(v_2 )=v_1 +6v_2 −4v_3 f(v_3 )=2v_1 +8v_2 −6v_3 •6 Ecrire la matrice N de f dans base F •7 Retrouver cette matrice a partir de M en utilisant la formule de changement de base |
let a , b >0 find all differentiable function f:(0,∞)→(0,∞) such that f′((a/x)) = ((bx)/(f(x))) , ∀ x>0 |