Question and Answers Forum

All Questions   Topic List

Relation and FunctionsQuestion and Answers: Page 4

Question Number 185211    Answers: 3   Comments: 0

Question Number 183712    Answers: 1   Comments: 0

solve: W(In(4x))=(√((x−1)))

solve:W(In(4x))=(x1)

Question Number 183158    Answers: 1   Comments: 0

Given f(x)= (([(1/3)x]∣2x∣+Ax)/(∣4−x^2 ∣)) if f ′(−1)= 5 then A=? [ ] = floor function

Givenf(x)=[13x]2x+Ax4x2iff(1)=5thenA=?[]=floorfunction

Question Number 183119    Answers: 0   Comments: 0

Question Number 180901    Answers: 1   Comments: 0

∫_1 ^( n) ((⌊x⌋)/x^2 )dx =

1nxx2dx=

Question Number 178635    Answers: 1   Comments: 2

solution set of log_x^(2 ) ((x/(∣x∣))−x)≥0

solutionsetoflogx2(xxx)0

Question Number 178624    Answers: 1   Comments: 0

let f:[0,1]→ R be given by f(x) = (((1+x^(1/3) )^3 +(1−x^(1/3) )^3 )/(8(1+x))) then max{f(x): x∈[0,1]}−min{f(x):x∈[0,1]} is

letf:[0,1]Rbegivenbyf(x)=(1+x13)3+(1x13)38(1+x)thenmax{f(x):x[0,1]}min{f(x):x[0,1]}is

Question Number 178032    Answers: 0   Comments: 3

• D={z : ∣z∣<1} • H (A→B) denotes the set of holomorfic functions from A to B • We define: W={f∈H (D→R) : ∣∣f∣∣_W <∞ } where ∣∣ ∙ ∣∣_W : { (W,→,R_+ ),(f, ,(Σ_(n=0) ^∞ ((∣f^((n)) (0)∣)/(n!)))) :} Let f∈W Show that ∀g∈H ( f(D^ )), g○f∈W tip: show that ∣∣h∣∣_W ≤cste × Sup_(z∈D) {∣h(z)∣+∣h′′(z)∣} and that W is an algebra then, re−wright f=f_1 +f_2 with f_2 : z Σ_(n=N) ^∞ ((f^((n)) (0))/(n!))z^n with N great enough to make sure that Σ_(n=0) ^∞ ((g^((n)) (0))/(n!))f_2 ^( n) is well defined and converges over W. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

D={z:z∣<1}H(AB)denotesthesetofholomorficfunctionsfromAtoBWedefine:W={fH(DR):∣∣fW<}where∣∣W:{WR+fn=0f(n)(0)n!LetfWShowthatgH(f(D¯)),gfWtip:showthat∣∣hWcste×SupzD{h(z)+h(z)}andthatWisanalgebrathen,rewrightf=f1+f2withf2:zn=Nf(n)(0)n!znwithNgreatenoughtomakesurethatn=0g(n)(0)n!f2niswelldefinedandconvergesoverW.

Question Number 177626    Answers: 3   Comments: 0

Question Number 177146    Answers: 2   Comments: 0

f(x)=f(x−1)+x^2 +2x f(6)=33 faind volue of f(50)=?

f(x)=f(x1)+x2+2xf(6)=33faindvolueoff(50)=?

Question Number 176501    Answers: 1   Comments: 1

find the range of x+y such that (x−2)^2 + (y−4)^2 = 49

findtherangeofx+ysuchthat(x2)2+(y4)2=49

Question Number 176336    Answers: 2   Comments: 0

in AB_ ^Δ C : ((b−c)/(h_a )) =k , and A^ is given. B^ , C^ =?

inABΔC:bcha=k,andA^isgiven.B^,C^=?

Question Number 175863    Answers: 0   Comments: 0

Question Number 175801    Answers: 2   Comments: 5

solve the follwing equation x(√(x )) + y(√(y )) = 3 and x(√(y )) + y(√(x )) = 2 someone solve the above equations in the following way x^3 + y^3 + 2xy(√(xy )) = 9.....(1) and x^2 y + y^2 x + 2xy(√(xy )) = 4......(2) (1) − (2) ⇒ (x − y)(x^2 − y^2 ) = 5 hence x = 3 and y = 2 which is obiviusly does not satisfy the original equations. where is the fallacy in the above solution? Please explain.

solvethefollwingequationxx+yy=3andxy+yx=2someonesolvetheaboveequationsinthefollowingwayx3+y3+2xyxy=9.....(1)andx2y+y2x+2xyxy=4......(2)(1)(2)(xy)(x2y2)=5hencex=3andy=2whichisobiviuslydoesnotsatisfytheoriginalequations.whereisthefallacyintheabovesolution?Pleaseexplain.

Question Number 175780    Answers: 0   Comments: 0

find the range of the function f(x) = cosx{sinx + (√(sin^2 x + sin^2 α )) }

findtherangeofthefunctionf(x)=cosx{sinx+sin2x+sin2α}

Question Number 175674    Answers: 2   Comments: 0

Question Number 175516    Answers: 1   Comments: 0

Question Number 174981    Answers: 0   Comments: 1

Question Number 174960    Answers: 1   Comments: 0

solve for all x ⌊x^2 ⌋ − ⌊x⌋^2 = 100

solveforallxx2x2=100

Question Number 174938    Answers: 0   Comments: 0

let u_n = ∫_0 ^1 x^n artan(nx)dx 1)lim u_n ? 2)nature of Σ u_n 3) calculate u_n 4)equivalent of u_n ?

letun=01xnartan(nx)dx1)limun?2)natureofΣun3)calculateun4)equivalentofun?

Question Number 174570    Answers: 1   Comments: 1

{ ((f((x/(x^2 +1)))=(x^2 /(x^4 +2x^2 +1)))),((f((√3) )=?)) :}

{f(xx2+1)=x2x4+2x2+1f(3)=?

Question Number 174469    Answers: 1   Comments: 0

f(x)=(x+1)(x+2)....(x+n) 1)calculate f^′ (x) (n≥1) 2)decompose F=(1/f)

f(x)=(x+1)(x+2)....(x+n)1)calculatef(x)(n1)2)decomposeF=1f

Question Number 174373    Answers: 0   Comments: 1

find ∫(√(x+(√(1−x))))dx

findx+1xdx

Question Number 173678    Answers: 3   Comments: 0

if f(x) is 2^(nd) digre function f(x−1)+f(x)+f(x+1)=x^2 +1 then faind f(2)=?

iff(x)is2nddigrefunctionf(x1)+f(x)+f(x+1)=x2+1thenfaindf(2)=?

Question Number 173132    Answers: 0   Comments: 5

U_n = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1) with U_0 =1 find U_(n ) in terms of n

Un=((4)n+111(4)n)Un1withU0=1findUnintermsofn

Question Number 173007    Answers: 0   Comments: 1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com