Question and Answers Forum |
Relation and FunctionsQuestion and Answers: Page 7 |
F (x ):= ((log (sin(x) +cos (x)))/(log (sin(2x)))) find the Domain of F ... D_( F) =? |
![]() |
E(x+(2/x))=((x^3 +1)/x) +((x^3 +8)/(2x^2 )) +3 , E(2)=? |
![]() |
S(x)=Σ_(n=1) ^∞ ln(1+(1/n))x^n S(−1)= ?.. please help.. |
solve in R: (((ax−b)^3 ))^(1/7) −(((b−ax)^(−3) ))^(1/7) =((65)/8) |
Given f(((2x−3)/(2x+1)))+f(((2x+3)/(1−2x)))= 4x f(x)=? |
![]() |
find ∫ (dx/(((√x)+(√(x+1)))((√(x−1))+(√x)))) |
calculate lim_(x→0) ((sh(2sinx)−sin(sh(2x)))/x^2 ) |
calculate ∫_1 ^2 ((logx)/(1+x))dx |
Trouver toutes les fonctions continues f:R→R verifiant: ∀(x,y)∈R^2 , f(x+y)f(x−y)=f^2 (x)f^2 (y).. monsieur j′ai suppose^ que f est un morphisme mutiplicatif de R.. mais ca ne sort pas... |
let α and β roots of x^2 +x+2 simplify Σ_(k=0) ^(n−1) (α^k +β^k ) and Σ_(k=0) ^(n−1) ( (1/α^k )+(1/β^k )) |
let U_n ={z∈C /z^n =1} simplify Σ_(p=0) ^(2n−1) w^p with w∈U_n and Σ_(p=0) ^(2n−1) (2w +1)^p |
find ∫_0 ^∞ ((arctan(2x))/(1+x^2 ))dx |
calculate ∫_γ z^3 e^(1/z^2 ) dz with γ(t)=3e^(it) and t∈[0,2π] |
calculate ∫_γ ze^(2/z^2 ) dz with γ(t)=(√3)e^(it) t∈[0,2π] |
f(x)=((cos(2x))/(sin(x))) developp f at fourier serie |
calculate ∫_(∣z∣=3) ((cos(2iz))/((z−2i)(z+i(√3))^2 ))dz |
f(t)=sin(pt) fourier serie.. |
f(z)=((cosz)/(1−sin(z^2 ))) find residus of f |
find ∫_0 ^∞ ((arctan(2x+1))/(x^2 +4))dx |
find ∫_(−∞) ^(+∞) ((x^3 dx)/((x^2 +x+1)^4 )) |
calculate Σ_(n=0) ^∞ ((n!^2 )/((2n)!)) |
resoudre dans Z^2 x^2 −y^2 =3x |
find lim_(n→+∞) ∫_(1/n) ^(√n) xe^(−x^2 ) arctan(nx)dx |