Question and Answers Forum

All Questions   Topic List

Relation and FunctionsQuestion and Answers: Page 8

Question Number 147687    Answers: 2   Comments: 0

calculate lim_(n→0) ((e^(−nx^2 ) −nx−1)/x^3 )

calculatelimn0enx2nx1x3

Question Number 147685    Answers: 2   Comments: 0

calculate lim_(x→0) ((sin(2sinx))/x^2 )

calculatelimx0sin(2sinx)x2

Question Number 147684    Answers: 0   Comments: 0

decompse F(x)=(x^3 /((x^2 +1)^4 )) inside C(x)

decompseF(x)=x3(x2+1)4insideC(x)

Question Number 147678    Answers: 0   Comments: 0

roots of Υ_n (x)=sin(narcsinx) (n integr natural) deompose F(x)=(1/(Υ_n (x)))

rootsofΥn(x)=sin(narcsinx)(nintegrnatural)deomposeF(x)=1Υn(x)

Question Number 147543    Answers: 2   Comments: 0

Π_(m=1) ^n ((1/2))^m

nm=1(12)m

Question Number 147469    Answers: 0   Comments: 1

Question Number 147467    Answers: 3   Comments: 0

f(x)=x^n e^(−x) 1) calculate f^((n)) (0) and f^((n)) (1) 2)developp f at integr serie 3) calculate ∫_0 ^1 f(x)dx

f(x)=xnex1)calculatef(n)(0)andf(n)(1)2)developpfatintegrserie3)calculate01f(x)dx

Question Number 147466    Answers: 2   Comments: 0

f(x)=x^2 −2x+5 find ∫ ((f(x))/(f^(−1) (x)))dx and ∫ ((f^(−1) (x))/(f(x)))dx

f(x)=x22x+5findf(x)f1(x)dxandf1(x)f(x)dx

Question Number 147302    Answers: 1   Comments: 0

P_a (z)=z^(2n) −2z^n cosa+1 montrer que p_a (z)=Π_(k=0) ^(n−1) (z^2 −2zcos((a/π)+((2kπ)/n))+1)

Pa(z)=z2n2zncosa+1montrerquepa(z)=n1k=0(z22zcos(aπ+2kπn)+1)

Question Number 147258    Answers: 0   Comments: 0

Question Number 147218    Answers: 0   Comments: 0

calculate ∫_(∣z−1∣=2) (e^z /((z+i(√2))^2 (z+i)^2 (2z−1)))dz

calculatez1∣=2ez(z+i2)2(z+i)2(2z1)dz

Question Number 147205    Answers: 1   Comments: 0

calculate ∫_1 ^∞ ((arctan((3/x)))/(2x^2 +1))dx

calculate1arctan(3x)2x2+1dx

Question Number 147204    Answers: 0   Comments: 0

find ∫_0 ^1 lnxln(1−x)ln(1−x^2 )dx

find01lnxln(1x)ln(1x2)dx

Question Number 147201    Answers: 0   Comments: 0

f(x)=cos(sinx) developp f at fourier serie

f(x)=cos(sinx)developpfatfourierserie

Question Number 147100    Answers: 0   Comments: 0

findA_n = ∫_0 ^1 x(x+1)(x+2)....(x+n)dx

findAn=01x(x+1)(x+2)....(x+n)dx

Question Number 147006    Answers: 1   Comments: 0

find I_n =∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)......(x^2 +n)))

findIn=0dx(x2+1)(x2+2)......(x2+n)

Question Number 146902    Answers: 1   Comments: 0

let α and β roots of z^2 +3z+5=0 simlify U_n = Σ_(k=0) ^n (α^k +β^k ) and V_n =Σ_(k=0) ^n ((1/α^k )+(1/β^k ))

letαandβrootsofz2+3z+5=0simlifyUn=k=0n(αk+βk)andVn=k=0n(1αk+1βk)

Question Number 146901    Answers: 1   Comments: 0

g(x)=cos(2arcsinx) calculate (dg/dx) and (d^2 g/dx^2 ) 2)find ∫_(−(1/2)) ^(1/2) g(x)dx

g(x)=cos(2arcsinx)calculatedgdxandd2gdx22)find1212g(x)dx

Question Number 146899    Answers: 1   Comments: 0

f(x)=sin^5 x calculate f^((5)) ((π/2))

f(x)=sin5xcalculatef(5)(π2)

Question Number 146898    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((cosx)/((x^2 +1)(x^2 +2)(x^2 +3)))dx

calculate0cosx(x2+1)(x2+2)(x2+3)dx

Question Number 146705    Answers: 1   Comments: 0

find lim_(x→0) ((sin(tan(2x)−x)+1−cos(πx^2 ))/x^2 )

findlimx0sin(tan(2x)x)+1cos(πx2)x2

Question Number 146550    Answers: 0   Comments: 0

f(x)=x^3 arctan((2/x)) 1)calculate f^((n)) (x) 2)developp f at integr srie at x_0 =1

f(x)=x3arctan(2x)1)calculatef(n)(x)2)developpfatintegrsrieatx0=1

Question Number 146549    Answers: 2   Comments: 0

find lim_(x→0) ((cos(x−sinx)+1−cos(x^2 ))/x^2 )

findlimx0cos(xsinx)+1cos(x2)x2

Question Number 146548    Answers: 2   Comments: 0

let f(x)=cos(αx) developp f at fourier serie (α real)

letf(x)=cos(αx)developpfatfourierserie(αreal)

Question Number 146547    Answers: 3   Comments: 0

calculate ∫_(∣z∣=5) ((2−z^2 )/((z^2 +9)(z−i)^2 ))dz

calculatez∣=52z2(z2+9)(zi)2dz

Question Number 146546    Answers: 2   Comments: 0

find ∫_(∣z−1∣=3) ((cos(πz))/((z−2)(z^2 +4)))dz

findz1∣=3cos(πz)(z2)(z2+4)dz

  Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com