Question and Answers Forum |
Relation and FunctionsQuestion and Answers: Page 8 |
calculate lim_(n→0) ((e^(−nx^2 ) −nx−1)/x^3 ) |
calculate lim_(x→0) ((sin(2sinx))/x^2 ) |
decompse F(x)=(x^3 /((x^2 +1)^4 )) inside C(x) |
roots of Υ_n (x)=sin(narcsinx) (n integr natural) deompose F(x)=(1/(Υ_n (x))) |
Π_(m=1) ^n ((1/2))^m |
![]() |
f(x)=x^n e^(−x) 1) calculate f^((n)) (0) and f^((n)) (1) 2)developp f at integr serie 3) calculate ∫_0 ^1 f(x)dx |
f(x)=x^2 −2x+5 find ∫ ((f(x))/(f^(−1) (x)))dx and ∫ ((f^(−1) (x))/(f(x)))dx |
P_a (z)=z^(2n) −2z^n cosa+1 montrer que p_a (z)=Π_(k=0) ^(n−1) (z^2 −2zcos((a/π)+((2kπ)/n))+1) |
![]() |
calculate ∫_(∣z−1∣=2) (e^z /((z+i(√2))^2 (z+i)^2 (2z−1)))dz |
calculate ∫_1 ^∞ ((arctan((3/x)))/(2x^2 +1))dx |
find ∫_0 ^1 lnxln(1−x)ln(1−x^2 )dx |
f(x)=cos(sinx) developp f at fourier serie |
findA_n = ∫_0 ^1 x(x+1)(x+2)....(x+n)dx |
find I_n =∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)......(x^2 +n))) |
let α and β roots of z^2 +3z+5=0 simlify U_n = Σ_(k=0) ^n (α^k +β^k ) and V_n =Σ_(k=0) ^n ((1/α^k )+(1/β^k )) |
g(x)=cos(2arcsinx) calculate (dg/dx) and (d^2 g/dx^2 ) 2)find ∫_(−(1/2)) ^(1/2) g(x)dx |
f(x)=sin^5 x calculate f^((5)) ((π/2)) |
calculate ∫_0 ^∞ ((cosx)/((x^2 +1)(x^2 +2)(x^2 +3)))dx |
find lim_(x→0) ((sin(tan(2x)−x)+1−cos(πx^2 ))/x^2 ) |
f(x)=x^3 arctan((2/x)) 1)calculate f^((n)) (x) 2)developp f at integr srie at x_0 =1 |
find lim_(x→0) ((cos(x−sinx)+1−cos(x^2 ))/x^2 ) |
let f(x)=cos(αx) developp f at fourier serie (α real) |
calculate ∫_(∣z∣=5) ((2−z^2 )/((z^2 +9)(z−i)^2 ))dz |
find ∫_(∣z−1∣=3) ((cos(πz))/((z−2)(z^2 +4)))dz |