Question and Answers Forum

All Questions   Topic List

Relation and FunctionsQuestion and Answers: Page 9

Question Number 146524    Answers: 0   Comments: 0

find ∫_0 ^∞ ((xsinx)/((x^4 +1)^3 ))dx

find0xsinx(x4+1)3dx

Question Number 146497    Answers: 1   Comments: 0

f(x)=(2/x)∫_0 ^x (t^2 /( (√(1+t^2 ))))dt calculate lim_(x→0) f(x)

f(x)=2x0xt21+t2dtcalculatelimx0f(x)

Question Number 146363    Answers: 1   Comments: 0

find ∫_(−i) ^(1+i) (x^2 −iy)dz along y=x^3

findi1+i(x2iy)dzalongy=x3

Question Number 146260    Answers: 1   Comments: 0

solve y^(′′) −2y^′ +y =e^(−x) sinx

solvey2y+y=exsinx

Question Number 146365    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(x^2 ))/(x^2 +4))dx

calculate0arctan(x2)x2+4dx

Question Number 146196    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 ))

calculate0dx(2x+1)4(x+3)5

Question Number 146197    Answers: 2   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^3 ))

calculate+dx(x2x+1)3

Question Number 146194    Answers: 1   Comments: 0

calculate Σ_(n=1) ^∞ (1/(n^3 5^n ))

calculaten=11n35n

Question Number 146193    Answers: 2   Comments: 0

solve y^(′′) −y^′ + y=xe^(−x)

solveyy+y=xex

Question Number 146087    Answers: 1   Comments: 0

1)find U_n =∫_0 ^1 x^n e^(−2x) dx 2)nature of Σ U_n ?

1)findUn=01xne2xdx2)natureofΣUn?

Question Number 146085    Answers: 0   Comments: 1

f(x,y)=x−(√(x+2y)) 1)condition on x and y to have f symetric 2) find (∂f/∂x) ,(∂f/∂y) ,(∂^2 f/(∂x∂y)) ,(∂^2 f/(∂y∂x)) 3) find (∂^2 f/∂^2 x) and (∂^2 f/∂^2 y)

f(x,y)=xx+2y1)conditiononxandytohavefsymetric2)findfx,fy,2fxy,2fyx3)find2f2xand2f2y

Question Number 146083    Answers: 1   Comments: 0

F(x)=x^n −e^(inα) 1) roots of F(x)? 2) factorize F(x) inside C[x]

F(x)=xneinα1)rootsofF(x)?2)factorizeF(x)insideC[x]

Question Number 146082    Answers: 0   Comments: 0

p(x)=(x^2 −x+1)^n −(x^2 +x+1)^n 1) roots of p(x)? 2) factorize p(x) inside C[x]

p(x)=(x2x+1)n(x2+x+1)n1)rootsofp(x)?2)factorizep(x)insideC[x]

Question Number 146072    Answers: 0   Comments: 0

Let F_n =2^2^n +1 the fermat number Prove that F_n is prime ⇔ 3^((F_n −1)/2) ≡1[F_n ]

LetFn=22n+1thefermatnumberProvethatFnisprime3Fn121[Fn]

Question Number 146061    Answers: 0   Comments: 0

Question Number 145960    Answers: 2   Comments: 0

Question Number 145941    Answers: 1   Comments: 0

find ∫_0 ^∞ e^(−3x) log(1+x^3 )dx

find0e3xlog(1+x3)dx

Question Number 145940    Answers: 0   Comments: 0

find ∫_0 ^1 e^(−x) log(1−x^4 )dx

find01exlog(1x4)dx

Question Number 145939    Answers: 0   Comments: 0

Ψ(x)=ch(sinx) developp Ψ at fourier serie

Ψ(x)=ch(sinx)developpΨatfourierserie

Question Number 145938    Answers: 1   Comments: 0

g(x)=cos(arctanx) if g(x)=Σ a_n x^n determine the sequence a_n

g(x)=cos(arctanx)ifg(x)=Σanxndeterminethesequencean

Question Number 145936    Answers: 0   Comments: 0

g(x)=arctan(cosx) developp f at fourier serie

g(x)=arctan(cosx)developpfatfourierserie

Question Number 146041    Answers: 3   Comments: 0

z′ = 2iz + (3−3i) geometrical representation is?

z=2iz+(33i)geometricalrepresentationis?

Question Number 145809    Answers: 1   Comments: 0

prove 1+2+3+.....=−(1/(12))

prove1+2+3+.....=112

Question Number 145750    Answers: 0   Comments: 0

find Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 (n+3)^2 ))

findn=0(1)n(2n+1)3(n+3)2

Question Number 145749    Answers: 1   Comments: 0

g(x)=log(tan(x)) developp g at fourier serie

g(x)=log(tan(x))developpgatfourierserie

Question Number 145748    Answers: 1   Comments: 0

f(x)=arctan(2sinx) developp f at fourier serie

f(x)=arctan(2sinx)developpfatfourierserie

  Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com