Question and Answers Forum |
Relation and FunctionsQuestion and Answers: Page 9 |
find ∫_0 ^∞ ((xsinx)/((x^4 +1)^3 ))dx |
f(x)=(2/x)∫_0 ^x (t^2 /( (√(1+t^2 ))))dt calculate lim_(x→0) f(x) |
find ∫_(−i) ^(1+i) (x^2 −iy)dz along y=x^3 |
solve y^(′′) −2y^′ +y =e^(−x) sinx |
calculate ∫_0 ^∞ ((arctan(x^2 ))/(x^2 +4))dx |
calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 )) |
calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^3 )) |
calculate Σ_(n=1) ^∞ (1/(n^3 5^n )) |
solve y^(′′) −y^′ + y=xe^(−x) |
1)find U_n =∫_0 ^1 x^n e^(−2x) dx 2)nature of Σ U_n ? |
f(x,y)=x−(√(x+2y)) 1)condition on x and y to have f symetric 2) find (∂f/∂x) ,(∂f/∂y) ,(∂^2 f/(∂x∂y)) ,(∂^2 f/(∂y∂x)) 3) find (∂^2 f/∂^2 x) and (∂^2 f/∂^2 y) |
F(x)=x^n −e^(inα) 1) roots of F(x)? 2) factorize F(x) inside C[x] |
p(x)=(x^2 −x+1)^n −(x^2 +x+1)^n 1) roots of p(x)? 2) factorize p(x) inside C[x] |
Let F_n =2^2^n +1 the fermat number Prove that F_n is prime ⇔ 3^((F_n −1)/2) ≡1[F_n ] |
![]() |
![]() |
find ∫_0 ^∞ e^(−3x) log(1+x^3 )dx |
find ∫_0 ^1 e^(−x) log(1−x^4 )dx |
Ψ(x)=ch(sinx) developp Ψ at fourier serie |
g(x)=cos(arctanx) if g(x)=Σ a_n x^n determine the sequence a_n |
g(x)=arctan(cosx) developp f at fourier serie |
z′ = 2iz + (3−3i) geometrical representation is? |
prove 1+2+3+.....=−(1/(12)) |
find Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 (n+3)^2 )) |
g(x)=log(tan(x)) developp g at fourier serie |
f(x)=arctan(2sinx) developp f at fourier serie |