Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188151 by Shrinava last updated on 26/Feb/23

Simplify:  (√(1+(1/1^2 )+(1/2^2 ))) +(√(1+(1/2^2 )+(1/3^2 ))) +...+(√(1+(1/(2022^2 ))+(1/(2023^2 ))))

Simplify:1+112+122+1+122+132+...+1+120222+120232

Answered by BaliramKumar last updated on 27/Feb/23

Solution:−  (√(1+(1/1^2 )+(1/2^2 ))) +(√(1+(1/2^2 )+(1/3^2 ))) +...+(√(1+(1/(2022^2 ))+(1/(2023^2 ))))  t_1 =(√(1+(1/1^2 )+(1/2^2 ) )) = (√(1+1+(1/4) )) = (√((9/4) )) = (3/2)   t_2  =(√(1+ (1/2^2 )+(1/3^2 ))) = (√(1+(1/4)+(1/9))) = (√(((49)/(36)) )) = (7/6)    t_3  =(√(1+ (1/3^2 )+(1/4^2 ))) = (√(1+(1/9)+(1/(16)))) = (√(((169)/(144)) )) = ((13)/(12))    t_4 ..............  t_(5..............)   t_(2022)  = (√(1+(1/(2022^2 ))+(1/(2023^2 ))))  S_1  = t_1 = (3/2)=1+(1/2)=1(1/2)  S_2  = S_1 +t_2 = (3/2)+(7/6)= ((16)/6) =(8/3)=2+(2/3)=2(2/3)  S_3  = S_2 +t_3  = (8/3)+((13)/(12))= ((45)/(12))=((15)/4)=3+(3/4) = 3(3/4)  S_(4..........)   S_(2022)  = 2022+((2022)/(2023)) =  determinant (((2022((2022)/(2023)))))Answer

Solution:1+112+122+1+122+132+...+1+120222+120232t1=1+112+122=1+1+14=94=32t2=1+122+132=1+14+19=4936=76t3=1+132+142=1+19+116=169144=1312t4..............t5..............t2022=1+120222+120232S1=t1=32=1+12=112S2=S1+t2=32+76=166=83=2+23=223S3=S2+t3=83+1312=4512=154=3+34=334S4..........S2022=2022+20222023=202220222023Answer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com