Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 208645 by Mastermind last updated on 20/Jun/24

Solve :  2x_1  − λ_1  − 5λ_2  = 0  2x_2  − λ_1  − 2λ_2  = 0  2x_3  − 3λ_1  − λ_2  = 0    Find the values of x_1 , x_2 , x_3 , λ_1 , and λ_2

Solve:2x1λ15λ2=02x2λ12λ2=02x33λ1λ2=0Findthevaluesofx1,x2,x3,λ1,andλ2

Answered by Frix last updated on 20/Jun/24

3 equations with 5 unknown, seriously?   ((x_1 ),(x_2 ),(x_3 ) ) =(λ_1 /2) ((1),(1),(3) ) +(λ_2 /2) ((5),(2),(1) )   This describes a plane in R^3 . We can eliminate  λ_1 , λ_2  to get  5x−14y+3z=0  Use the cross product to get the normal vector:   ((1),(1),(3) ) × ((5),(2),(1) ) = (((−5)),((14)),((−3)) )

3equationswith5unknown,seriously?(x1x2x3)=λ12(113)+λ22(521)ThisdescribesaplaneinR3.Wecaneliminateλ1,λ2toget5x14y+3z=0Usethecrossproducttogetthenormalvector:(113)×(521)=(5143)

Commented by Mastermind last updated on 23/Jun/24

Thank you but kindly help me value. I appreciate

Thankyoubutkindlyhelpmevalue.Iappreciate

Commented by Frix last updated on 23/Jun/24

The x_i  depend on λ_1 , λ_2  ∈R, there are infinite  values.

Thexidependonλ1,λ2R,thereareinfinitevalues.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com