All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 175213 by Mastermind last updated on 23/Aug/22
SolvebyMethodofvariationparameterd2ydx2−3dydx+2y=sinxM.m
Answered by Ar Brandon last updated on 23/Aug/22
d2ydx2−3dydx+2y=sinx(h.e.)→r2−3r+2=0,r=1,r=2yh=αex+βe2x⇒yp=α(x)ex+β(x)e2x{α′(x)ex+β′(x)e2x=0α′(x)(ex)′+β′(x)(e2x)′=sinx⇒{α′(x)ex+β′(x)e2x=0α′(x)ex+2β′(x)e2x=sinx⇒W=|exe2xex2e2x|=2e3x−e3x=e3x⇒Wα=|0e2xsinx2e2x|=−e2xsinx;Wβ=|ex0exsinx|=exsinxα(x)=∫WαWdx=−∫e−xsinxdx=e−x2(sinx+cosx)β(x)=∫WβWdx=∫e−2xsinxdx=−12e−2xsinx+12∫e−2xcosxdx=−12e−2xsinx+12{−12e−2xcosx−12∫e−2xsinxdx}=45(−12e−2xsinx−14e−2xcosx)=−e−2x5(2sinx+cosx)⇒yp=12(sinx+cosx)−15(2sinx+cosx)=110sinx+310cosxY=yh+yp=αex+βe2x+110sinx+310cosx
Commented by Tawa11 last updated on 25/Aug/22
GreatSir.
yh=αex+βe2xyp=acosx+bsinx(−acosx−bsinx)−3(−asinx+bcosx)+2(acosx+bsinx)=sinx⇒(a−3b)cosx+(3a+b)sinx=sinx{a−3b=03a+b=1⇒10a=3⇒a=310,b=110⇒yp=310cosx+110sinxY=yh+yp=αex+βe2x+310cosx+110sinx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com