Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 175213 by Mastermind last updated on 23/Aug/22

Solve by Method of variation parameter  (d^2 y/dx^2 )−3(dy/dx)+2y=sinx    M.m

SolvebyMethodofvariationparameterd2ydx23dydx+2y=sinxM.m

Answered by Ar Brandon last updated on 23/Aug/22

(d^2 y/dx^2 )−3(dy/dx)+2y=sinx  (h.e.)→r^2 −3r+2=0, r=1, r=2  y_h =αe^x +βe^(2x)  ⇒y_p =α(x)e^x +β(x)e^(2x)    { ((α′(x)e^x +β′(x)e^(2x) =0)),((α′(x)(e^x )′+β′(x)(e^(2x) )′=sinx)) :}⇒ { ((α′(x)e^x +β′(x)e^(2x) =0)),((α′(x)e^x +2β′(x)e^(2x) =sinx)) :}  ⇒W= determinant ((e^x ,e^(2x) ),(e^x ,(2e^(2x) )))=2e^(3x) −e^(3x) =e^(3x)   ⇒W_α = determinant ((0,e^(2x) ),((sinx),(2e^(2x) )))=−e^(2x) sinx ; W_β = determinant ((e^x ,0),(e^x ,(sinx)))=e^x sinx  α(x)=∫(W_α /W)dx=−∫e^(−x) sinxdx=(e^(−x) /2)(sinx+cosx)  β(x)=∫(W_β /W)dx=∫e^(−2x) sinxdx=−(1/2)e^(−2x) sinx+(1/2)∫e^(−2x) cosxdx            =−(1/2)e^(−2x) sinx+(1/2){−(1/2)e^(−2x) cosx−(1/2)∫e^(−2x) sinxdx}            =(4/5)(−(1/2)e^(−2x) sinx−(1/4)e^(−2x) cosx)=−(e^(−2x) /5)(2sinx+cosx)  ⇒y_p =(1/2)(sinx+cosx)−(1/5)(2sinx+cosx)=(1/(10))sinx+(3/(10))cosx  Y=y_h +y_p =αe^x +βe^(2x) +(1/(10))sinx+(3/(10))cosx

d2ydx23dydx+2y=sinx(h.e.)r23r+2=0,r=1,r=2yh=αex+βe2xyp=α(x)ex+β(x)e2x{α(x)ex+β(x)e2x=0α(x)(ex)+β(x)(e2x)=sinx{α(x)ex+β(x)e2x=0α(x)ex+2β(x)e2x=sinxW=|exe2xex2e2x|=2e3xe3x=e3xWα=|0e2xsinx2e2x|=e2xsinx;Wβ=|ex0exsinx|=exsinxα(x)=WαWdx=exsinxdx=ex2(sinx+cosx)β(x)=WβWdx=e2xsinxdx=12e2xsinx+12e2xcosxdx=12e2xsinx+12{12e2xcosx12e2xsinxdx}=45(12e2xsinx14e2xcosx)=e2x5(2sinx+cosx)yp=12(sinx+cosx)15(2sinx+cosx)=110sinx+310cosxY=yh+yp=αex+βe2x+110sinx+310cosx

Commented by Tawa11 last updated on 25/Aug/22

Great Sir.

GreatSir.

Answered by Ar Brandon last updated on 23/Aug/22

y_h =αe^x +βe^(2x)   y_p =acosx+bsinx  (−acosx−bsinx)−3(−asinx+bcosx)                                    +2(acosx+bsinx)=sinx  ⇒(a−3b)cosx+(3a+b)sinx=sinx   { ((a−3b=0)),((3a+b=1)) :} ⇒10a=3⇒a=(3/(10)) , b=(1/(10))  ⇒y_p =(3/(10))cosx+(1/(10))sinx  Y=y_h +y_p =αe^x +βe^(2x) +(3/(10))cosx+(1/(10))sinx

yh=αex+βe2xyp=acosx+bsinx(acosxbsinx)3(asinx+bcosx)+2(acosx+bsinx)=sinx(a3b)cosx+(3a+b)sinx=sinx{a3b=03a+b=110a=3a=310,b=110yp=310cosx+110sinxY=yh+yp=αex+βe2x+310cosx+110sinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com