Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157489 by MathSh last updated on 23/Oct/21

Solve for real numbers:  tan(10x) = tan^5 (2x)

Solveforrealnumbers:tan(10x)=tan5(2x)

Answered by MJS_new last updated on 24/Oct/21

let t=tan 2x  ((t(t^4 −10t^2 +5))/(5t^4 −10t^2 +1))=t^5   (t+1)^3 t(t−1)^3 (t^2 +1)=0  t=−1∨t=0∨t=1  x=−(π/8)+((nπ)/2)∨x=((nπ)/2)∨x=(π/8)+((nπ)/2)

lett=tan2xt(t410t2+5)5t410t2+1=t5(t+1)3t(t1)3(t2+1)=0t=1t=0t=1x=π8+nπ2x=nπ2x=π8+nπ2

Commented by tounghoungko last updated on 24/Oct/21

tan 5x=((tan^5 x−10tan^3 x+5tan x)/(1−10tan^2 x+5tan^4 x))

tan5x=tan5x10tan3x+5tanx110tan2x+5tan4x

Commented by MJS_new last updated on 24/Oct/21

yes

yes

Commented by MathSh last updated on 24/Oct/21

Thank you dear Ser very nice

ThankyoudearServerynice

Answered by tounghoungko last updated on 24/Oct/21

 Solve for x∈R . tan (10x)=tan^5 (2x)  ⇔ tan (5θ)=((sin^5 θ)/(cos^5 θ)) ,[θ=2x]   ⇔((sin 5θ)/(cos 5θ)) = ((sin^5 θ)/(cos^5 θ))  ⇔ ((5sin θ−20sin^3 θ+16sin^5 θ)/(5cos θ−20cos^3 θ+16cos^5 θ))=((sin^5 θ)/(cos^5 θ))  ⇔5sin θcos^5 θ−20sin^3 θcos^5 θ+16sin^5 θcos^5 θ=       5cos θsin^5 θ−20cos^3 θsin^5 θ+16cos^5 θsin^5 θ  ⇔sin θcos θ [5cos^4 θ−20sin^2 θcos^4 θ+16sin^4 θcos^4 θ−                            [5sin^4 θ+20cos^2 θsin^4 θ−16sin^4 θcos^4 θ ]=0  ⇔ (1/2)sin 2θ [5(cos^4 θ−sin^4 θ)+20(cos^2 θsin^4 θ−sin^2 θcos^4 θ)]=0  ⇔(1/2)sin 2θ [5(cos^2 θ−sin^2 θ)+20cos^2 θsin^2 θ(sin^2 θ−cos^2 θ)]=0  ⇔(5/2)sin 2θ cos 2θ (1−sin^2 2θ)=0  ⇔(5/4)sin 4θ (1−sin^2 2θ)=0  (i) (5/4)sin 4θ=0⇒  { ((4θ=2nπ)),((4θ=(1+2n)π)) :}   ⇒  { ((8x=2nπ)),((8x=(1+2n)π)) :}⇒ { ((x=((nπ)/4))),((x=(((1+2n)/8))π)) :}  (ii) 1−sin^2 2θ=0  ⇒ { ((sin 2θ=1)),((sin 2θ=−1)) :} ⇒ { (( 2θ=(π/2)+2kπ)),((2θ=((3π)/2)+2kπ)) :}    { ((4x=(π/2)+2kπ)),((4x=((3π)/2)+2kπ)) :}⇒ { ((x=(((4k+1)/8))π)),((x=(((3+4k)/8))π)) :}

SolveforxR.tan(10x)=tan5(2x)tan(5θ)=sin5θcos5θ,[θ=2x]sin5θcos5θ=sin5θcos5θ5sinθ20sin3θ+16sin5θ5cosθ20cos3θ+16cos5θ=sin5θcos5θ5sinθcos5θ20sin3θcos5θ+16sin5θcos5θ=5cosθsin5θ20cos3θsin5θ+16cos5θsin5θsinθcosθ[5cos4θ20sin2θcos4θ+16sin4θcos4θ[5sin4θ+20cos2θsin4θ16sin4θcos4θ]=012sin2θ[5(cos4θsin4θ)+20(cos2θsin4θsin2θcos4θ)]=012sin2θ[5(cos2θsin2θ)+20cos2θsin2θ(sin2θcos2θ)]=052sin2θcos2θ(1sin22θ)=054sin4θ(1sin22θ)=0(i)54sin4θ=0{4θ=2nπ4θ=(1+2n)π{8x=2nπ8x=(1+2n)π{x=nπ4x=(1+2n8)π(ii)1sin22θ=0{sin2θ=1sin2θ=1{2θ=π2+2kπ2θ=3π2+2kπ{4x=π2+2kπ4x=3π2+2kπ{x=(4k+18)πx=(3+4k8)π

Commented by MathSh last updated on 24/Oct/21

Thank you dear Ser cool

ThankyoudearSercool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com