Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 22463 by Tinkutara last updated on 18/Oct/17

Solve for real x:  (1/([x])) + (1/([2x])) = (x) + (1/3),  where [x] is the greatest integer less  than or equal to x and (x) = x − [x],  [e.g. [3.4] = 3 and (3.4) = 0.4].

Solveforrealx:1[x]+1[2x]=(x)+13,where[x]isthegreatestintegerlessthanorequaltoxand(x)=x[x],[e.g.[3.4]=3and(3.4)=0.4].

Answered by ajfour last updated on 18/Oct/17

let x=n+f  ⇒ (1/n)+(1/(2n+[2f]))=f+(1/3)  Case I:   f< 1/2  ⇒   (3/(2n))=f+(1/3)  ⇒     0≤  (3/(2n))−(1/3) <(1/2)  or     ⇒   (1/3) ≤ (3/(2n)) <(5/6)  ⇒    (9/5) < n≤(9/2)  ⇒ n=2, 3, 4  corresponding f=(3/(2n))−(1/3)   f= (5/(12)), (1/6), (1/(24))  So x_1 =2+(5/(12))= ((29)/(12))         x_2 =3+(1/6)=((19)/6)         x_3 =4+(1/(24))=((97)/(24))  Case II: if  (1/2)≤ f <1   (1/n)+(1/(2n+1))=f+(1/3)  As    f ≥1/2        (1/2)≤ ((3n+1)/(n(2n+1)))−(1/3) < 1  ⇒    (5/6) ≤ ((3n+1)/(n(2n+1))) <(4/3)  condition (a):  ⇒   10n^2 +5n ≤ 18n+6  or   10n^2 −13n−6 ≤ 0        10(n−((13)/(20)))^2 ≤ 6+((169)/(40))   ⇒ ((13)/(20))−(√((409)/(400))) ≤ n ≤ ((13)/(20))+(√((409)/(400)))   ⇒      n=0, 1  condition (b):    8n^2 +4n > 9n+3  ⇒   8n^2 −5n−3 > 0  ⇒     8(n−(5/(16)))^2 > 3+((25)/(32))  n < (5/(16))−((11)/(16)) and  n > (5/(16))+((11)/(16))  ⇒   n< −(6/(16)) and  n > 1  Intersection of the two conditions  gives no solution for n for this  case.  So finally x=((29)/(12)), ((19)/6), ((97)/(24)) .

letx=n+f1n+12n+[2f]=f+13CaseI:f<1/232n=f+13032n13<12or1332n<5695<n92n=2,3,4correspondingf=32n13f=512,16,124Sox1=2+512=2912x2=3+16=196x3=4+124=9724CaseII:if12f<11n+12n+1=f+13Asf1/2123n+1n(2n+1)13<1563n+1n(2n+1)<43condition(a):10n2+5n18n+6or10n213n6010(n1320)26+169401320409400n1320+409400n=0,1condition(b):8n2+4n>9n+38n25n3>08(n516)2>3+2532n<5161116andn>516+1116n<616andn>1Intersectionofthetwoconditionsgivesnosolutionfornforthiscase.Sofinallyx=2912,196,9724.

Commented by Tinkutara last updated on 18/Oct/17

Thank you very much Sir!

ThankyouverymuchSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com