All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 22463 by Tinkutara last updated on 18/Oct/17
Solveforrealx:1[x]+1[2x]=(x)+13,where[x]isthegreatestintegerlessthanorequaltoxand(x)=x−[x],[e.g.[3.4]=3and(3.4)=0.4].
Answered by ajfour last updated on 18/Oct/17
letx=n+f⇒1n+12n+[2f]=f+13CaseI:f<1/2⇒32n=f+13⇒0⩽32n−13<12or⇒13⩽32n<56⇒95<n⩽92⇒n=2,3,4correspondingf=32n−13f=512,16,124Sox1=2+512=2912x2=3+16=196x3=4+124=9724CaseII:if12⩽f<11n+12n+1=f+13Asf⩾1/212⩽3n+1n(2n+1)−13<1⇒56⩽3n+1n(2n+1)<43condition(a):⇒10n2+5n⩽18n+6or10n2−13n−6⩽010(n−1320)2⩽6+16940⇒1320−409400⩽n⩽1320+409400⇒n=0,1condition(b):8n2+4n>9n+3⇒8n2−5n−3>0⇒8(n−516)2>3+2532n<516−1116andn>516+1116⇒n<−616andn>1Intersectionofthetwoconditionsgivesnosolutionfornforthiscase.Sofinallyx=2912,196,9724.
Commented by Tinkutara last updated on 18/Oct/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com