Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119795 by bobhans last updated on 27/Oct/20

Solve in real numbers the system of  equations  { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

Solveinrealnumbersthesystemofequations{(3x+y)(x+3y)xy=14(x+y)(x2+14xy+y2)=36

Answered by 1549442205PVT last updated on 27/Oct/20

Put x=ky we get  (((3k+1)(k+3)(√k) )/((k+1)(k^2 +14k+1)))=(7/(18))  ⇔18(3k+1)(k+3)(√k) =7(k+1)(k^2 +14k+1)    { (((3x+y)(x+3y)(√(xy)) =14 (1))),(((x+y)(x^2 +14xy+y^2 )= 36 (2))) :}   (2)⇔x^4 +15x^2 y+15xy^2 +y^3 −36=0(3)  ⇔324k(3k^2 +10k+3)^2 =49(k^3 +15k^2 +15k+1)^2   ⇔324k(9k^4 +118k^2 +60k^3 +60k+9)  =49(k^6 +30k^5 +255k^4 +452k^3 +255k^2 +30k+1)  ⇔49k^6 −1446k^5 −6945k^4 −16084k^3 −6945k^2 −1446k+49i  ⇔49(k^3 +(1/k^3 ))−1446(k^2 +(1/k^2 ))−6945(k+(1/k))−16084=0(∗)  Put k+(1/k)=t⇒k^2 +(1/k^2 )=t^2 −2  k^3 +(1/k^3 )=t^3 −3t.Replace into we get  49(t^3 −3t)−1446(t^2 −2)−6945t−16084=0  ⇔49t^3 −1446t^2 −7092t−13192=0  49(t−34)(49t^2 +220t+338)=0  ⇒t=34⇔k+(1/k)=34⇔k^2 −34k+1=0  Δ′=17^2 −1=288=12^2 .2  k=17±12(√2)  i)k=17+12(√2) ⇒x=(17+12(√2))y  Replace into (3)we get  (3)⇔37/y^3 =(k^3 +15k^2 +15k+1)  =k(k^2 +1)+15(k^2 +1)+14k−14  =k(34k)+15.34k+14k−14  =34(k^2 +1)+524k−48=34.34k+524k−48  =1680k−48=1680(17+12(√2))−48=36/y^3   ⇔28512+20160(√2)=36/y^3   y^3 =((36)/(28512+20160(√2))) ⇒y=^3 (√(1/(792+560(√2))))  =^3 (√(1/((6+4(√2))^3 )))=(1/(6+4(√2)))=((3−2(√2))/2)  x=(17+12(√2)).((3−2(√2))/2)=((3+2(√2))/2)  ii)k=17−12(√2) .Similarly,we get  y=((3+2(√2))/2),x=((3−2(√2))/2)  Thus the given system has two solutions  (x,y)∈{(((3−2(√2))/2),((3+2(√2))/2)),(((3+2(√2))/2),((3−2(√2))/2))}

Putx=kyweget(3k+1)(k+3)k(k+1)(k2+14k+1)=71818(3k+1)(k+3)k=7(k+1)(k2+14k+1){(3x+y)(x+3y)xy=14(1)(x+y)(x2+14xy+y2)=36(2)(2)x4+15x2y+15xy2+y336=0(3)324k(3k2+10k+3)2=49(k3+15k2+15k+1)2324k(9k4+118k2+60k3+60k+9)=49(k6+30k5+255k4+452k3+255k2+30k+1)49k61446k56945k416084k36945k21446k+49i49(k3+1k3)1446(k2+1k2)6945(k+1k)16084=0()Putk+1k=tk2+1k2=t22k3+1k3=t33t.Replaceintoweget49(t33t)1446(t22)6945t16084=049t31446t27092t13192=049(t34)(49t2+220t+338)=0t=34k+1k=34k234k+1=0Δ=1721=288=122.2k=17±122i)k=17+122x=(17+122)yReplaceinto(3)weget(3)37/y3=(k3+15k2+15k+1)=k(k2+1)+15(k2+1)+14k14=k(34k)+15.34k+14k14=34(k2+1)+524k48=34.34k+524k48=1680k48=1680(17+122)48=36/y328512+201602=36/y3y3=3628512+201602y=31792+5602=31(6+42)3=16+42=3222x=(17+122).3222=3+222ii)k=17122.Similarly,wegety=3+222,x=3222Thusthegivensystemhastwosolutions(x,y){(3222,3+222),(3+222,3222)}

Answered by MJS_new last updated on 27/Oct/20

in this case it′s easier to let  x=p−q∧y=p+q  we get   { ((4(4p^2 −q^2 )(√(p^2 −q^2 ))=14)),((8p(4p^2 −3q^2 )=36 ⇒ q^2 =((8p^3 −9)/(6p)))) :}  insert in first equation  (((16p^3 +9)(√(54−12p^3 )))/(9(√p^3 )))=14  squaring and transforming leads to  p^9 −((27)/8)p^6 +((27)/(64))p^3 −((729)/(512))=0  (p^3 −((27)/8))(p^6 +((27)/(64)))=0 ⇒ p=(3/2) ⇒ q=±(√2)  ⇒ x=(3/2)∓(√2)∧y=(3/2)±(√2)

inthiscaseitseasiertoletx=pqy=p+qweget{4(4p2q2)p2q2=148p(4p23q2)=36q2=8p396pinsertinfirstequation(16p3+9)5412p39p3=14squaringandtransformingleadstop9278p6+2764p3729512=0(p3278)(p6+2764)=0p=32q=±2x=322y=32±2

Answered by benjo_mathlover last updated on 27/Oct/20

by substituting  { ((u=(√x))),((v=(√y))) :}  we obtain equivalent form    { ((uv(3u^4 +10u^2 v^2 +3v^4 )=14)),((u^6 +15u^4 v^2 +15u^2 v^4 +v^6 =36)) :}  Here we should recognize elements  of binomial with exponent equal to 6.   { ((36+2.14=u^6 +6u^5 v+15u^4 v^2 +20u^3 v^3 +15u^2 v^4 +6uv^5 +v^6 )),((36−2.14=u^6 −6u^5 v+15u^4 v^2 −20u^3 v^3 +15u^2 v^4 −6uv^5 +v^6 )) :}  therefore  { (((u+v)^6 =64)),(((u−v)^6 =8)) :}  which implies  { ((u+v=2)),((u−v=(√2))) :} since u,v have to be +ve  so  { ((u=1+((√2)/2))),((v=1−((√2)/2))) :} ⇔  { (((x,y)=((3/2)+(√2), (3/2)−(√2)))),(((x,y)=((3/2)−(√2), (3/2)+(√2)) )) :}

bysubstituting{u=xv=yweobtainequivalentform{uv(3u4+10u2v2+3v4)=14u6+15u4v2+15u2v4+v6=36Hereweshouldrecognizeelementsofbinomialwithexponentequalto6.{36+2.14=u6+6u5v+15u4v2+20u3v3+15u2v4+6uv5+v6362.14=u66u5v+15u4v220u3v3+15u2v46uv5+v6therefore{(u+v)6=64(uv)6=8whichimplies{u+v=2uv=2sinceu,vhavetobe+veso{u=1+22v=122{(x,y)=(32+2,322)(x,y)=(322,32+2)

Answered by behi83417@gmail.com last updated on 27/Oct/20

 { (((3x^2 +3y^2 +10xy)(√(xy))=14)),(((x+y)(x^2 +14xy+y^2 )=36)) :}  ⇒_(xy=q^2 ) ^(x+y=p)  { (([3(x+y)^2 +4xy](√(xy))=14)),(((x+y)[(x+y)^2 +12xy]=36)) :}  ⇒ { ((q.(3p^2 +4q^2 )=14)),((p.(p^2 +12q^2 )=36)) :}⇒(q/p).((3p^2 +4q^2 )/(p^2 +12q^2 ))=(7/(18))  ⇒^((p/q)=t) (1/t).((3t^2 +4)/(t^2 +12))=(7/(18))⇒54t^2 +72=7t^3 +84t  ⇒7t^3 −54t^2 +84t−72=0  ⇒(t−6)(7t^2 −12t+12)=0  ⇒ { ((t=(p/q)=6)),((t=((6±(√(36−84)))/7)=((6±4i(√3))/7))) :}  (p/q)=6⇒6q^2 (36q^2 +12q^2 )=36⇒q^3 =(1/8)  ⇒q=(1/2),p=6q=3⇒ { ((x+y=3)),((xy=q^2 =(1/4))) :}  ⇒z^2 −3z+(1/4)=0⇒z=x∨y=((3±(√(9−1)))/2)  ⇒x∨y=((3±2(√2))/2)=(3/2)±(√2)    .■

{(3x2+3y2+10xy)xy=14(x+y)(x2+14xy+y2)=36x+y=pxy=q2{[3(x+y)2+4xy]xy=14(x+y)[(x+y)2+12xy]=36{q.(3p2+4q2)=14p.(p2+12q2)=36qp.3p2+4q2p2+12q2=718pq=t1t.3t2+4t2+12=71854t2+72=7t3+84t7t354t2+84t72=0(t6)(7t212t+12)=0{t=pq=6t=6±36847=6±4i37pq=66q2(36q2+12q2)=36q3=18q=12,p=6q=3{x+y=3xy=q2=14z23z+14=0z=xy=3±912xy=3±222=32±2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com