All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146761 by tabata last updated on 15/Jul/21
Solvethepartialdefferintialequationut=a2uxx,0<x<L,t>0u(0,t)=0andu(L,t)=0andux(x,0)=f(x)
Commented by tabata last updated on 15/Jul/21
?????????]
Answered by Olaf_Thorendsen last updated on 15/Jul/21
ut=a2uxx(1)Inphysics,thetwovariablest(thetime)andx(thedistance)arealwaysseparated:u(x)=A(t)B(x)(1):A′(t)B(x)=a2A(t)B″(x)⇒A′(t)A(t)=a2B″(x)B(x)Afunctionoft(left)isequaltoafunctionofx(right).Astandxareindependent,necessarilyit′saconstantA′(t)A(t)=a2B″(x)B(x)=constantC1(2)(2):A′(t)A(t)=C1⇒A(t)=C2eC1tInthereallife,C1<0becausethereisadissipationofenergy.LetC1=−w2A(t)=C2e−w2t(2):B″(x)B(x)=C1a2=−w2a2B″(x)+ω2a2B(x)=0B(x)=αcos(wax)+βsin(wax)u(0,t)=0⇒B(0)=0⇒α=0u(L,t)=0⇒B(L)=0⇒βsin(wLa)=0⇒wLa=2πw=2πaLB(x)=βsin(2πxL)andA(t)=C2e−4π2a2L2tu(x,t)=A(t)B(x)u(x,t)=C2e−4π2a2L2tβsin(2πxL)u(x,t)=C3e−4π2a2L2tsin(2πxL)ux(x,t)=2πLC3e−4π2a2L2tcos(2πxL)ux(x,0)=f(x)⇒2πLC3cos(2πxL)=f(x)⇒C3=L2π.f(x)cos(2πxL)Finally:u(x,t)=L2πe−4π2a2L2tf(x)tan(2πxL)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com