Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 125202 by bemath last updated on 09/Dec/20

 Solve the reccurence relation  a_n  = 2(a_(n−1) −a_(n−2) ) ; given a_0 =1   and a_1 = 0.

Solvethereccurencerelationan=2(an1an2);givena0=1anda1=0.

Answered by liberty last updated on 09/Dec/20

The characteristic equation :≡ x^2 −2x+2=0  and have the roots are  { ((α=1+i)),((α^−  = 1−i)) :}  Expressing α and α^−  in trigonometric form  we have  { ((α=(√2) (cos (π/4)+ i sin (π/4)))),((α^−  = (√2) (cos (π/4)−i sin (π/4)))) :}  The general solution is a_n  = P (α)^n +Q(α^− )^n   by the Moivre′s Theorem give   a_n  = ((√2))^n  [ P(cos ((nπ)/4)+i sin ((nπ)/4))+Q(cos ((nπ)/4)−i sin ((nπ)/4)) ]   a_n  = ((√2))^n  [ (P+Q)cos ((nπ)/4)+(P−Q)i sin ((nπ)/4) ]  The initial condition imply that   { ((P+Q=1)),(((√2) (((√2)/2) (P+Q)+((√2)/2) (P−Q)i)=0)) :}  we get (P−Q)i = −1  thus the required solution given by    a_n  = ((√2))^n  (cos ((nπ)/4)−sin ((nπ)/4)); for n ≥ 0

Thecharacteristicequation:≡x22x+2=0andhavetherootsare{α=1+iα=1iExpressingαandαintrigonometricformwehave{α=2(cosπ4+isinπ4)α=2(cosπ4isinπ4)Thegeneralsolutionisan=P(α)n+Q(α)nbytheMoivresTheoremgivean=(2)n[P(cosnπ4+isinnπ4)+Q(cosnπ4isinnπ4)]an=(2)n[(P+Q)cosnπ4+(PQ)isinnπ4]Theinitialconditionimplythat{P+Q=12(22(P+Q)+22(PQ)i)=0weget(PQ)i=1thustherequiredsolutiongivenbyan=(2)n(cosnπ4sinnπ4);forn0

Answered by mathmax by abdo last updated on 09/Dec/20

a_n =2(a_(n−1) −a_(n−2) ) ⇒a_n −2a_(n−1) +2a_(n−2) =0 ⇒  a_(n+2) −2a_(n+1) +2a_n =0 →r^2 −2r+2=0  Δ^′  =1−2=−1 ⇒r_1 =1+i  and r_2 =1−i ⇒  a_n =α r_1 ^n  +β r_2 ^n       we have r_1 =(√2)e^((iπ)/4)  and r_2 =(√2)e^(−((iπ)/4))  ⇒  a_n =α((√2))^n e^((inπ)/4) +β ((√2))^n  e^(−((inπ)/4))   a_0 =1 =α+β  a_1 =0 =α(√2)e^((iπ)/4)  +β(√2)e^(−((iπ)/4))  we get the system   { ((α+β=1          →              Δ_s = determinant (((1              1)),(((√2)e^((iπ)/4)         (√2)e^(−((iπ)/4)) ))))),(((√2)e^((iπ)/4) α +(√2)e^(−((iπ)/4)) β =0  )) :}  =(√2)(e^(−((iπ)/4)) −e^((iπ)/4) )=(√2)(−2i×((√2)/2))=−2i  α =( determinant (((1              1)),((0          (√2)e^(−((iπ)/4)) )))/(−2i))=(i/2)(√2)e^(−((iπ)/4))   β =( determinant (((1            1)),(((√2)e^((iπ)/4)    0)))/(−2i))=((−(√2)e^((iπ)/4) )/(−2i))=−((√2)/2)i e^((iπ)/4)  ⇒  a_n =(i/2)(√2)e^((−iπ)/4) ((√2))^n  e^((inπ)/4)   −((√2)/2)i e^((iπ)/4)  ((√2))^n  e^(−((inπ)/4))   =(i/2)((√2))^(n+1) e^((i(n−1)π)/4) −(i/2)((√2))^(n+1)  e^(−((i(n−1)π)/4))   =i((√2))^(n−1)  e^((i(n−1)π)/4) −i((√2))^(n−1)  e^(−((i(n−1)π)/4))   =i((√2))^(n−1) (2i sin((((n−1)π)/4)))=−((√2))^(n+1)  sin((((n−1)π)/4))

an=2(an1an2)an2an1+2an2=0an+22an+1+2an=0r22r+2=0Δ=12=1r1=1+iandr2=1ian=αr1n+βr2nwehaver1=2eiπ4andr2=2eiπ4an=α(2)neinπ4+β(2)neinπ4a0=1=α+βa1=0=α2eiπ4+β2eiπ4wegetthesystem{α+β=1Δs=|112eiπ42eiπ4|2eiπ4α+2eiπ4β=0=2(eiπ4eiπ4)=2(2i×22)=2iα=|1102eiπ4|2i=i22eiπ4β=|112eiπ40|2i=2eiπ42i=22ieiπ4an=i22eiπ4(2)neinπ422ieiπ4(2)neinπ4=i2(2)n+1ei(n1)π4i2(2)n+1ei(n1)π4=i(2)n1ei(n1)π4i(2)n1ei(n1)π4=i(2)n1(2isin((n1)π4))=(2)n+1sin((n1)π4)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com