All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 122002 by liberty last updated on 13/Nov/20
Solvethesystemofequations{x2+y2+2xyx+y=1x+y=x2−yinrealnumbersx,y.
Answered by MJS_new last updated on 13/Nov/20
x+y=x2−ysquaring&transformingy2−(2x2+1)y+(x4−x)=0⇒(a)y=x2−x∨(b)y=x2+x+1[wehavesomelimitationsbutlet′sjustgoonandseewhatwillhappen]insertingin(1)weget(a)x6−2x5+2x4+2x3−3x2=0(b)x6+4x5+9x4+14x3+10x2+4x=0⇒(a)x2(x−1)(x+1)(x2−2x+3)=0(b)x(x+2)(x4+2x3+5x2+4x+2)=0⇒(a)x=−1∨x=0∨x=1⇒y=2∨y=0∨y=0(b)x=−2∨x=0⇒y=3∨y=1testingallpairsweget(x∣y)=(1∣0)∨(−2∣3)
Commented by liberty last updated on 13/Nov/20
thankyousir
Answered by liberty last updated on 13/Nov/20
mywaymultiplythefirsteqbyx+ygive(x2+y2)(x+y)+2xy=x+yaddingx2+y2tobothsidesofthiseq,wearedrivenbystandardmanipulationtonicefactorization:(x2+y2)(x+y)+(x+y)2=(x2+y2)+(x+y)(x2+y2)(x+y−1)+(x+y)(x+y−1)=0(x2+y2+x+y)(x+y−1)=0Thefirstfactorcannotbezerobecausex+y>0sox+y−1mustbezero.Insertingy=1−xintosecondeqofthesystemwefindthetwosolutions(x,y):(1,0)and(−2,3).▴
Terms of Service
Privacy Policy
Contact: info@tinkutara.com