Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 102089 by Ar Brandon last updated on 06/Jul/20

  The Gamma function Γ(α) is defined as follows;  Γ(α)=∫_0 ^∞ y^(α−1) e^(−y) dy , α>0  a\ Show that Γ(α+1)=αΓ(α).  b\Conclude that Γ(n)=(n−1)! , n=1, 2, 3, ...  c\Determine Γ(55).

TheGammafunctionΓ(α)isdefinedasfollows;Γ(α)=0yα1eydy,α>0aShowthatΓ(α+1)=αΓ(α).bConcludethatΓ(n)=(n1)!,n=1,2,3,...cDetermineΓ(55).

Answered by Ar Brandon last updated on 06/Jul/20

a\Γ(α+1)=∫_0 ^∞ y^α e^(−y) dy=[y^α ∫e^(−y) dy]_0 ^∞ −∫_0 ^∞ {(dy^α /dy)∙∫e^(−y) dy}dy                          =[−y^α e^(−y) ]_0 ^∞ +∫_0 ^∞ αy^(α−1) e^(−y) dy=α∫_0 ^∞ y^(α−1) e^(−y) dy                          =αΓ(α)

aΓ(α+1)=0yαeydy=[yαeydy]00{dyαdyeydy}dy=[yαey]0+0αyα1eydy=α0yα1eydy=αΓ(α)

Answered by floor(10²Eta[1]) last updated on 06/Jul/20

Γ(55)=54!       :)

Γ(55)=54!:)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com