All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 18093 by Tinkutara last updated on 15/Jul/17
Theequationsinx+sin2x+2sinxsin2x=2cosx+cos2xissatisfiedbyvaluesofxforwhich(1)x=nπ+(−1)nπ6,n∈I(2)x=2nπ+2π3,n∈I(3)x=2nπ−2π3,n∈I(4)x=2nπ−π2,n∈I
Commented by ajfour last updated on 15/Jul/17
yes,youarerightdear.
Answered by ajfour last updated on 15/Jul/17
sinx+sin2x+2sinxsin2x=2cosx+cos2xsinx+sin2x+cosx−cos3x=2cosx+cos2x⇒sinx+2sinxcosx=cosx+cos3x+cos2x(sinx)(1+2cosx)=2cosxcos2x+cos2x(sinx)(1+2cosx)−(cos2x)(1+2cosx)=0(1+2cosx)(sinx−cos2x)=0(1+2cosx)(sinx−1+2sin2x)=0(1+2cosx)(1+sinx)(2sinx−1)=0⇒cosx=−12and/orsinx=−1and/orsinx=12⇒x=2nπ±2π3x=2nπ−π2x=nπ+(−1)nπ6.Alloptionsarecorrect.
Commented by Tinkutara last updated on 15/Jul/17
ThanksSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com