Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 191149 by SLVR last updated on 19/Apr/23

The number of solutions of  ∣x+3∣+∣x−2∣+3sinx−3=0 is

Thenumberofsolutionsofx+3+x2+3sinx3=0is

Commented by SLVR last updated on 19/Apr/23

sir kindly help me

sirkindlyhelpme

Commented by SLVR last updated on 19/Apr/23

sir Mr.W...kindly help if  you are free

sirMr.W...kindlyhelpifyouarefree

Commented by Frix last updated on 19/Apr/23

I'm Freex ��

Answered by Frix last updated on 19/Apr/23

∣x+3∣+∣x−2∣=3(1−sin x)  f_1 (x)=∣x+3∣+∣x−2∣= { ((−2x−1; x<−3)),((5; −3≤x≤2)),((2x+1; x>2)) :}  0≤(f_2 (x)=3(1−sin x))≤6  x∈[−(7/2); (5/2)]: 5≤f_1 (x)≤6 ⇒  Solutions possible within this interval ⇒  2 solutions:  x_1 =−π+sin^(−1)  (2/3)  x_2 =−sin^(−1)  (2/3)

x+3+x2∣=3(1sinx)f1(x)=∣x+3+x2∣={2x1;x<35;3x22x+1;x>20(f2(x)=3(1sinx))6x[72;52]:5f1(x)6Solutionspossiblewithinthisinterval2solutions:x1=π+sin123x2=sin123

Commented by SLVR last updated on 19/Apr/23

thanks sir

thankssir

Answered by mr W last updated on 19/Apr/23

∣x+3∣+∣x−2∣=3(1−sin x)  f(x)=g(x)  LHS f(x)≥5  0≤RHS g(x)≤6  that means: solution could exist.  with x<−3:  f(x)=−3−x+2−x=−1−2x  for x<−3.5 f(x)>6, that means  for x<−3.5 f(x)≠g(x)  for −3.5≤x<−3 g(x)<3(1+sin 3)≈3.423<5  that means for −3.5≤x<−3 f(x)≠g(x)  ⇒for x<−3 f(x)=g(x) has no solution.  with x>2:  similarly to above f(x)=g(x) has  no solution.  with −3≤x≤2:  f(x)=5  f(x)=g(x)  5=3(1−sin x)  ⇒sin x=−(2/3)  ⇒x=−sin^(−1) (2/3) or −π+sin^(−1) (2/3)  totally:  ∣x+3∣+∣x−2∣+3sinx−3=0 has  2 solutions:  x=−sin^(−1) (2/3) or −π+sin^(−1) (2/3)

x+3+x2∣=3(1sinx)f(x)=g(x)LHSf(x)50RHSg(x)6thatmeans:solutioncouldexist.withx<3:f(x)=3x+2x=12xforx<3.5f(x)>6,thatmeansforx<3.5f(x)g(x)for3.5x<3g(x)<3(1+sin3)3.423<5thatmeansfor3.5x<3f(x)g(x)forx<3f(x)=g(x)hasnosolution.withx>2:similarlytoabovef(x)=g(x)hasnosolution.with3x2:f(x)=5f(x)=g(x)5=3(1sinx)sinx=23x=sin123orπ+sin123totally:x+3+x2+3sinx3=0has2solutions:x=sin123orπ+sin123

Commented by SLVR last updated on 19/Apr/23

Thanks a lot..Prof.W  god bless you sir

Thanksalot..Prof.Wgodblessyousir

Answered by mehdee42 last updated on 19/Apr/23

let  f(x)= ∣x−2∣+∣x+3∣   &  g(x)=3−3sinx  ∀ x −3≤x≤2 →f(x)=5 ⇒5+3sinx−3=0⇒sinx=−(2/3)⇒x=−sin^(−1) ((2/3)) & −π+sin^(−1) ((2/3)) ✓  ∀ x<−3  , x>2 ⇒f(x)>g(x)⇒therefor the equation f(x)=g(x) has no solution.

letf(x)=x2+x+3&g(x)=33sinxx3x2f(x)=55+3sinx3=0sinx=23x=sin1(23)&π+sin1(23)x<3,x>2f(x)>g(x)therefortheequationf(x)=g(x)hasnosolution.

Commented by mehdee42 last updated on 19/Apr/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com