Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 38012 by Rio Mike last updated on 20/Jun/18

The roots of the equation  2x^2  − x + 3 = 0 are α and β  if the roots of 3x^2  + px + q=0   are α + (1/α) and β + (1/(β )) find the value  of p and q.

Therootsoftheequation2x2x+3=0areαandβiftherootsof3x2+px+q=0areα+1αandβ+1βfindthevalueofpandq.

Commented by tanmay.chaudhury50@gmail.com last updated on 20/Jun/18

spend time to read book...deaddict from  virtual school....

spendtimetoreadbook...deaddictfromvirtualschool....

Answered by MJS last updated on 20/Jun/18

2x^2 −x+3=0  x=(1/4)±(√((1/(16))−(3/2)))=(1/4)±((√(23))/4)i  α=(1/4)−((√(23))/4)i ⇒ (1/α)=(1/6)+((√(23))/6)i ⇒ α+(1/α)=(5/(12))−((√(23))/(12))i  β=(1/4)+((√(23))/4)i ⇒ (1/β)=(1/6)−((√(23))/6)i ⇒ β+(1/β)=(5/(12))+((√(23))/(12))i  3(x−(5/(12))+((√(23))/(12))i)(x−(5/(12))−((√(23))/(12))i)=  =3x^2 −(5/2)x+1  p=−(5/2)  q=1

2x2x+3=0x=14±11632=14±234iα=14234i1α=16+236iα+1α=5122312iβ=14+234i1β=16236iβ+1β=512+2312i3(x512+2312i)(x5122312i)==3x252x+1p=52q=1

Answered by ajfour last updated on 20/Jun/18

αβ = (3/2) ,   α+β = (1/2)  (α+(1/α))(β+(1/β))=(q/3)  α+β+(1/α)+(1/β) = −(p/3)  .........  ⇒   αβ+(α/β)+(β/α)+(1/(αβ)) = (q/3)        (α+β)+((α+β)/(αβ)) = −(p/3)      (3/2)+((((1/2))^2 −2((3/2)))/(3/2))+(2/3) = (q/3)  and   (1/2)+((((1/2)))/(((3/2)))) = −(p/3)  q=3[(3/2)−((11)/6)+(2/3)] = 1  p=−3[(1/2)+(1/3)] = −(5/2) .

αβ=32,α+β=12(α+1α)(β+1β)=q3α+β+1α+1β=p3.........αβ+αβ+βα+1αβ=q3(α+β)+α+βαβ=p332+(12)22(32)32+23=q3and12+(12)(32)=p3q=3[32116+23]=1p=3[12+13]=52.

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Jun/18

α+β=(1/(2  ))  αβ=(3/2)  α+(1/α)+β+(1/β)=((−p)/3)  α+β+((α+β)/(αβ))=((−p)/3)  (1/2)+(1/2)×(2/3)=−(p/3)  (5/6)=−(p/3)  p=−(5/2)  (α+(1/α))×(β+(1/β))=(q/3)  αβ+(α/β)+(β/α)+(1/(αβ))=(q/3)  αβ+(1/(αβ))+((α^2 +β^2 )/(αβ))=(q/3)  (3/2)+(2/3)+(((α+β)^2 −2αβ)/(αβ))=(q/3)  ((13)/6)+(((1/4)−2×(3/2))/(3/2))=(q/3)  ((13)/6)+(((1−12)/4)/(3/2))=(q/3)  ((13)/6)−((11×2)/(12))=(q/3)  ((13−11)/6)=(q/3)  q=1

α+β=12αβ=32α+1α+β+1β=p3α+β+α+βαβ=p312+12×23=p356=p3p=52(α+1α)×(β+1β)=q3αβ+αβ+βα+1αβ=q3αβ+1αβ+α2+β2αβ=q332+23+(α+β)22αβαβ=q3136+142×3232=q3136+112432=q313611×212=q313116=q3q=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com