All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 27295 by iy last updated on 04/Jan/18
Thevalueoftheintegral∫π01a2−2acosx+1dx(a<1)is
Commented by abdo imad last updated on 04/Jan/18
letdothechangementtan(x2)=tI=∫0πdxa2−2acosx+1=∫0∝dt1+t2a2−2a1−t21+t2+1=∫0∝dta2(1+t2)−2a(1−t2)+1+t2=∫0∝dt(a2+2a+1)t2+a2−2a+1=∫0∝dt(a+1)2t2+(a−1)2=∫0∝dt(a+1)2(t2+(1−aa+1)2)andwedothechangeentt=1−aa+1α⇒I=1(a+1)2∫0∝1−aa+1dα(1−aa+1)2(1+α2)=1(a+1)21−aa+1(a+1)2(1−a)2π2=π2(1−a2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com