Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 88372 by mr W last updated on 10/Apr/20

There are four boxes, each of them  contains exactly the same numbers:  1,2,3,...,n.  Four different numbers are drawn  from the boxes and multiplicated  with each other to get a product.  What′s the sum of all products?  Σ_(a≠b≠c≠d) abcd=?

Therearefourboxes,eachofthemcontainsexactlythesamenumbers:1,2,3,...,n.Fourdifferentnumbersaredrawnfromtheboxesandmultiplicatedwitheachothertogetaproduct.Whatsthesumofallproducts?abcdabcd=?

Commented by mr W last updated on 10/Apr/20

thank you sir!  sorry, i didn′t make clear: the boxes  are identical, so the oder of numbers  playes no rule. example 1, 3, 8, 10  should build only one single product  1×3×8×10 in the sum.

thankyousir!sorry,ididntmakeclear:theboxesareidentical,sotheoderofnumbersplayesnorule.example1,3,8,10shouldbuildonlyonesingleproduct1×3×8×10inthesum.

Commented by mr W last updated on 10/Apr/20

maybe it′s better if i had expressed the  question like this:  a box contains the numbers 1,2,3,...,n.  four numbers are drawn from the  box and multiplicated with each other  to build a product. find the sum of  the products of all possible combinations.

maybeitsbetterifihadexpressedthequestionlikethis:aboxcontainsthenumbers1,2,3,...,n.fournumbersaredrawnfromtheboxandmultiplicatedwitheachothertobuildaproduct.findthesumoftheproductsofallpossiblecombinations.

Commented by jagoll last updated on 10/Apr/20

(1.2.3.4)+(1.3.4.5)+(1.4.5.6)+...  ((n−3).(n−2).(n−1).n) like this?

(1.2.3.4)+(1.3.4.5)+(1.4.5.6)+...((n3).(n2).(n1).n)likethis?

Commented by mr W last updated on 10/Apr/20

yes.

yes.

Commented by jagoll last updated on 10/Apr/20

i don′t have idea sir . how to  solve it?

idonthaveideasir.howtosolveit?

Commented by Tony Lin last updated on 10/Apr/20

first consider Σ_(a≠b) ab  Σ_(a≠b) ab  =1×2+1×3+∙∙∙+1×n  +2×1+2×3+∙∙∙+2×n  ∙∙∙  +n×1+n×2+∙∙∙+n(n−1)r  =1[((n(n+1))/2)]−1^2 +2[((n(n+1))/2)]−2^2 +∙∙∙  +n[((n(n+1))/2)]−n^2   =[((n(n+1))/2)]^2 −((n(n+1)(2n+1))/6)  =((n(n−1)(n+1)(3n+2))/(12))  Σ_(a≠b≠c) abc  =1×2×3+1×2×4+∙∙∙+1×2×n  +1×3×2+1×3×4+∙∙∙+1×n(n−1)  ∙∙∙  +1×n×2+1×n×3+∙∙∙+1×n(n−1)  ∙∙∙and Σ2×∙∙∙ Σ3×∙∙∙ to Σn×∙∙∙  =((n(n−1)(n+1)(3n+2))/(12))−2[((n(n+1))/2)−1^2 ]  +((n(n−1)(n+1)(3n+2))/(12))−2[((2n(n+1))/2)−2^2 ]  ∙∙∙  +((n(n−1)(n+1)(3n+2))/(12))−2[((n^2 (n+1))/2)−n^2 ]  =((n^2 (n−1)(n+1)(3n+2))/(12))−((2n(n−1)(n+1)(3n+2))/(12))  =((n(n−1)(n−2)(n+1)(3n+2))/(12))  Σ_(a≠b≠c≠d) abcd  =1×2×3×4+1×2×3×5+∙∙∙+1×2×3×n  +1×2×4×3+1×2×4×5+∙∙∙+1×2×4×n  ∙∙∙  +1×2×n×3+1×2×n×4+∙∙∙+1×2×n(n−1)  ∙∙∙and Σ1×3×∙∙∙to Σ1×n×∙∙∙  and Σ2×∙∙∙ to Σn×∙∙∙  =((n(n−1)(n−2)(n+1)(3n+2))/(12))  −3{((n(n−1)(n+1)(3n+2))/(12))−2[((n(n+1))/2)−1^2 ]}  +((n(n−1)(n−2)(n+1)(3n+2))/(12))  −3{((n(n−1)(n+1)(3n+2))/(12))−2[((2n(n+1))/2)−2^2 ]  +∙∙∙  =((n^2 (n−1)(n−2)(n+1)(3n+2))/(12))  −3[((n^2 (n−1)(n+1)(3n+2))/(12))−((2n(n−1)(n+1)(3n+2))/(12))]  =((n^2 (n−1)(n−2)(n+1)(3n+2))/(12))  − ((3n(n−1)(n−2)(n+1)(3n+2))/(12))   =((n(n−1)(n−2)(n−3)(n+1)(3n+2))/(12))  from the rule   Σ_(a_1 ≠a_2 ≠a_3 ∙∙∙≠a_k ) Π_(j=1) ^k a_j  ,1<k<n  =((P_k ^n (n+1)(3n+2))/(12)) , P_k ^n =C_k ^n ×k!

firstconsiderabababab=1×2+1×3++1×n+2×1+2×3++2×n+n×1+n×2++n(n1)r=1[n(n+1)2]12+2[n(n+1)2]22++n[n(n+1)2]n2=[n(n+1)2]2n(n+1)(2n+1)6=n(n1)(n+1)(3n+2)12abcabc=1×2×3+1×2×4++1×2×n+1×3×2+1×3×4++1×n(n1)+1×n×2+1×n×3++1×n(n1)andΣ2×Σ3×toΣn×=n(n1)(n+1)(3n+2)122[n(n+1)212]+n(n1)(n+1)(3n+2)122[2n(n+1)222]+n(n1)(n+1)(3n+2)122[n2(n+1)2n2]=n2(n1)(n+1)(3n+2)122n(n1)(n+1)(3n+2)12=n(n1)(n2)(n+1)(3n+2)12abcdabcd=1×2×3×4+1×2×3×5++1×2×3×n+1×2×4×3+1×2×4×5++1×2×4×n+1×2×n×3+1×2×n×4++1×2×n(n1)andΣ1×3×toΣ1×n×andΣ2×toΣn×=n(n1)(n2)(n+1)(3n+2)123{n(n1)(n+1)(3n+2)122[n(n+1)212]}+n(n1)(n2)(n+1)(3n+2)123{n(n1)(n+1)(3n+2)122[2n(n+1)222]+=n2(n1)(n2)(n+1)(3n+2)123[n2(n1)(n+1)(3n+2)122n(n1)(n+1)(3n+2)12]=n2(n1)(n2)(n+1)(3n+2)123n(n1)(n2)(n+1)(3n+2)12=n(n1)(n2)(n3)(n+1)(3n+2)12fromtherulea1a2a3akkj=1aj,1<k<n=Pkn(n+1)(3n+2)12,Pkn=Ckn×k!

Commented by Tony Lin last updated on 10/Apr/20

I guess the answer might be  ((C_k ^n (n+1)(3n+2))/(12))  which has no permutation  only combination

IguesstheanswermightbeCkn(n+1)(3n+2)12whichhasnopermutationonlycombination

Commented by mr W last updated on 10/Apr/20

i don′t habe the solution for Σ_(a≠b≠c≠d) abcd.  but Σ_(a≠b≠c) abc=(((n−2)(n−1)n^2 (n+1)^2 )/(48)).  can you please check with yours?

idonthabethesolutionforabcdabcd.butabcabc=(n2)(n1)n2(n+1)248.canyoupleasecheckwithyours?

Commented by Tony Lin last updated on 10/Apr/20

my suppose is wrong but I found   Σa=Σ_(k=1) ^n k=((n(n+1))/2)  Σ_(a≠b) ab=Σ_(k=1) ^(n−1) ((k(k+1))/2)=((n(n−1)(n+1)^2 (3n+2))/(24))  Σ_(a≠b≠c) abc=Σ_(k=1) ^(n−1) ((k(k−1)(k+1)^2 (3k+2))/(24))  =((n^2 (n+1)^2 (n−1)(n−2))/(48))  Σ_(a≠b≠c≠d) abcd=Σ_(k=1) ^(n−1) ((k^2 (k+1)^2 (k−1)(k−2))/(48))  =(((n−3)(n−2)(n−1)n(n+1)(15n^3 +15n^2 −10n−8))/(5760))

mysupposeiswrongbutIfoundΣa=nk=1k=n(n+1)2abab=n1k=1k(k+1)2=n(n1)(n+1)2(3n+2)24abcabc=n1k=1k(k1)(k+1)2(3k+2)24=n2(n+1)2(n1)(n2)48abcdabcd=n1k=1k2(k+1)2(k1)(k2)48=(n3)(n2)(n1)n(n+1)(15n3+15n210n8)5760

Commented by mr W last updated on 10/Apr/20

very interesting, thanks alot sir!

veryinteresting,thanksalotsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com