All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 123866 by benjo_mathlover last updated on 28/Nov/20
Tomrmjssir.integrallover∫π/40tan(π4−x)cos2xtan3x+tan2x+tanxdx=?
Answered by liberty last updated on 28/Nov/20
tan(π4−x)=1−tanx1+tanxJ=∫π/401−tanx1+tanxcos2xtan3x+tan2x+tanxdxlettanx=h⇒dx=dhcos2x→{h=1h=0J=∫01(1−h1+h)h3+h2+hdh=∫011−h(1+h)hh2+h+1dhleth=r2,giveJ=2∫1−r2(1+r2)r4+r2+1drJ=2∫01−r2(1−r−2)r2(r−1+r)r2+1+r−2drnextletr+r−1=t→{t=2t=∞J=−2∫02dttt2−1=2(arcsect)∣2∞J=2(π2−π3)=π3.
Answered by MJS_new last updated on 29/Nov/20
tan(π4−x)=1−tanx1+tanxcos2x=11+tan2xletmewriteτfortanxnowwehave−∫π/40(τ−1)(τ2+1)(τ+1)τ(τ2+τ+1)dx==[t=ττ2+τ+1→dx=−2(τ2+τ+1)3/2τ(τ2−1)(τ2+1)dt]=2∫3/30τ2+τ+1(τ2+1)2dt=[τ=tanx=−t2−1−−3t4−2t2+12t2]=2∫3/30dtt2+1=2arctant=π3[2arctant=arccos1−t21+t2=arccos11+sin2x]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com