Question and Answers Forum

All Questions   Topic List

TrigonometryQuestion and Answers: Page 10

Question Number 193533    Answers: 2   Comments: 0

If cot x−tan x=4 then cot^2 +(2/(sin 2x)) −tan^2 x =?

Ifcotxtanx=4thencot2+2sin2xtan2x=?

Question Number 193502    Answers: 2   Comments: 0

oolve cos 2x .tan (((7π)/(19)))=tan (((17π)/(23)))+tan (((6π)/(23)))+tan (((12π)/(19)))

oolvecos2x.tan(7π19)=tan(17π23)+tan(6π23)+tan(12π19)

Question Number 193464    Answers: 1   Comments: 3

Question Number 193461    Answers: 2   Comments: 0

lim_(x→0) ((((√(1+sin x))−1)/(sin 2x))) = ??

limx0(1+sinx1sin2x)=??

Question Number 193458    Answers: 1   Comments: 1

lim_(x→0) (((1−cos(x))/(x sin(x)))) = ???

limx0(1cos(x)xsin(x))=???

Question Number 193436    Answers: 1   Comments: 0

((sin(x+18^o ))/(sin(48^o )))=((sin(x))/(sin(18^o )))

sin(x+18o)sin(48o)=sin(x)sin(18o)

Question Number 193423    Answers: 3   Comments: 0

when tan(θ/2)=(1/a) then find cosθ=? from the a

whentanθ2=1athenfindcosθ=?fromthea

Question Number 193399    Answers: 1   Comments: 0

Question Number 193390    Answers: 0   Comments: 0

A ship X sailing with a velocity (21 kmh 052⁰) observes a light from a lighthuse due North. The bearing of the liglhthouse from the ship 20 minutes later is found to be 312. calcuate correct to thre sigificant figures i) the orignal distance when the lighthoues is due West of the ship from the time when it is due North of the ship. ii) the time in minutes, when the lighthouse is due West of the ship from the time when it is due North of the ship. iii) the distance in km of the ship from then lighthoue when the lighthouse is due West of the ship

A ship X sailing with a velocity (21 kmh 052⁰) observes a light from a lighthuse due North. The bearing of the liglhthouse from the ship 20 minutes later is found to be 312. calcuate correct to thre sigificant figures i) the orignal distance when the lighthoues is due West of the ship from the time when it is due North of the ship. ii) the time in minutes, when the lighthouse is due West of the ship from the time when it is due North of the ship. iii) the distance in km of the ship from then lighthoue when the lighthouse is due West of the ship

Question Number 193385    Answers: 1   Comments: 0

Question Number 193381    Answers: 1   Comments: 0

Question Number 193366    Answers: 1   Comments: 0

2sin^2 2x>3cos x+3

2sin22x>3cosx+3

Question Number 193349    Answers: 1   Comments: 0

Question Number 193266    Answers: 0   Comments: 0

Question Number 193205    Answers: 1   Comments: 1

Question Number 193203    Answers: 1   Comments: 0

Question Number 193111    Answers: 2   Comments: 0

Question Number 192985    Answers: 1   Comments: 0

prove it : lim_(n→∞) Π_(i=1) ^n cos(θ/2^i )=((sinθ)/θ) then show : im_(n→∞) cos(π/4)cos(π/8)...cos(π/2^(n+1) ) =(2/π)

proveit:limnni=1cosθ2i=sinθθthenshow:imncosπ4cosπ8...cosπ2n+1=2π

Question Number 192766    Answers: 0   Comments: 0

if π/2<x<π and (√(1+sin x/1−sin x= ksec x ,then k=))

ifπ/2<x<πand1+sinx/1sinx=ksecx,thenk=

Question Number 192763    Answers: 1   Comments: 0

Prove that: sin A + sin B + sin C > 2 (A,B,C ∈ (π/2))

Provethat:sinA+sinB+sinC>2(A,B,Cπ2)

Question Number 192733    Answers: 1   Comments: 0

Question Number 192537    Answers: 1   Comments: 0

{ ((tan (α+2β)=(√(1+2k)))),((tan^2 (α+β){1+k tan^2 β}=k+tan^2 β)) :} Find cot 2β .

{tan(α+2β)=1+2ktan2(α+β){1+ktan2β}=k+tan2βFindcot2β.

Question Number 192536    Answers: 1   Comments: 0

R=((3sin 5°+4cos 5°−5cos 58°+35(√2) cos 13°)/(cos 5°))=?

R=3sin5°+4cos5°5cos58°+352cos13°cos5°=?

Question Number 192497    Answers: 1   Comments: 0

tan 66°+tan 12°=(√3) +tan x x=?

tan66°+tan12°=3+tanxx=?

Question Number 192346    Answers: 1   Comments: 0

Question Number 192282    Answers: 1   Comments: 0

find the value of tan (π/9) + 4sin (π/9) = ?

findthevalueoftanπ9+4sinπ9=?

  Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com