Question and Answers Forum |
TrigonometryQuestion and Answers: Page 2 |
Find amplitude, period, maximum and minimum value for function f(x)= 6 tan ((1/5)x)−8 |
![]() |
(√(1−sin)) |
Find the maximum value of 3sin^2 x−8cosx+5=? |
△ABC. 2a+b=2c. Find the minimum of (3/(sin C)) + (1/(tan A)). |
![]() |
![]() |
determiner a et b par ; AB ⊥BC { ((AM =5)),((AC =16)) :} |
If 0 < x < (π/2) then prove sin(cosx) < cosx < cos(sinx). not using graph. |
Area of [ACBD] ? {A ,B }∈ elipse verticale [AB]⊥MC M∈ elipse horizontale A ∈[elipse horizontale ∩elipse veeticale]. |
![]() |
question 212462 prove that ∫_0 ^∞ (dx/( (√(x^4 +25x^2 +160))))=∫_0 ^∞ (dx/( (√(x^4 −95x^2 +2560)))) my attempt (but is it a proof?): I_b ^a :=∫_0 ^∞ (dx/( (√(x^4 +ax^2 +b))))=(2/( π(b)^(1/4) agm (1, ((√(a+2(√b)))/(2(b)^(1/4) ))))) ∫_0 ^∞ (dx/( (√(x^4 +ax^2 +b))))= [t=2arctan (x/( (b)^(1/4) ))] =(1/( (b)^(1/4) ))∫_0 ^(π/2) (dt/( (√(1−((1/2)−(a/(4(√b))))sin^2 t))))= [K (k^2 ):=∫_0 ^(π/2) (dt/( (√(1−k^2 sin^2 t))))] =(1/( (b)^(1/4) ))K ((1/2)−(a/(4(√b)))) K (k^2 ) =(2/(πagm (1, (√(1−k^2 ))))) (1/( (b)^(1/4) ))K ((1/2)−(a/(4(√b)))) =(2/( π(b)^(1/4) agm (1, ((√(a+2(√b)))/(2(b)^(1/4) ))))) u_0 =p∧v_0 =q u_(n+1) =((u_n +v_n )/2)∧v_(n+1) =(√(u_n v_n )) agm (p, q) =lim_(n→∞) u_n =lim_(n→∞) v_n I_(160) ^(25) =(1/( π((10))^(1/4) agm (1, ((√(25+8(√(10))))/(4((10))^(1/4) ))))) I_(2560) ^(−95) =(1/(2π((10))^(1/4) agm (1, ((√(−95+32(√(10))))/(8((10))^(1/4) ))))) I_(160) ^(25) =I_(2560) ^(−95) ⇔ agm (1, ((√(25+8(√(10))))/(4((10))^(1/4) )))=2agm (1, ((√(−95+32(√(10))))/(8((10))^(1/4) ))) which is true |
![]() |
Axis of C,P,N then concluat for Area[ OPN] ; ON:tangente au cercle |
![]() |
![]() |
![]() |
![]() |
![]() |
Reponse a la question N° Q212291 S(ABCD)= 66,69 |
![]() |
Determiner: R1 R2 R3 pour b=12cm EF // MN ; EF Tangent aux cercles: C1(R1) C2(R2) ; EF=a MN=b MN: tangent au cercle C2 OM=ON=((3a)/2) ∡MON=2x |
if 7^(sin^(2 ) x) + 7^(cos^2 x) = 8 find x |
![]() |
![]() |
In a triangle the bisector of the side c is perpendicular to side b. Prove that 2tanC + tanA = 0. |