Question and Answers Forum

All Questions   Topic List

TrigonometryQuestion and Answers: Page 4

Question Number 209117    Answers: 0   Comments: 0

Question Number 209115    Answers: 0   Comments: 0

Question Number 208912    Answers: 0   Comments: 1

⋐ π

π

Question Number 208755    Answers: 1   Comments: 0

Question Number 208742    Answers: 0   Comments: 0

Question Number 208437    Answers: 1   Comments: 0

Question Number 208256    Answers: 0   Comments: 1

determinant ()

Question Number 208252    Answers: 1   Comments: 0

cos (((2π)/(21)))cos (((4π)/(21)))cos (((8π)/(21)))cos (((10π)/(22)))cos (((16π)/(21)))cos (((20π)/(21)))=?

cos(2π21)cos(4π21)cos(8π21)cos(10π22)cos(16π21)cos(20π21)=?

Question Number 208130    Answers: 1   Comments: 0

(1/(cos x−cos 3x)) + (1/(cos x−cos 5x)) + (1/(cos x−cos 7x)) + (1/(cos x−cos 11x))=?

1cosxcos3x+1cosxcos5x+1cosxcos7x+1cosxcos11x=?

Question Number 208104    Answers: 0   Comments: 0

Question Number 207925    Answers: 1   Comments: 0

Question Number 207516    Answers: 2   Comments: 1

3(sinθ − cosθ)^4 + 6(sinθ + cosθ)^2 + 4(sin^6 θ + cos^6 θ) = ?

3(sinθcosθ)4+6(sinθ+cosθ)2+4(sin6θ+cos6θ)=?

Question Number 207434    Answers: 0   Comments: 0

Relating to question 207407 x^3 −12x^2 +27x−17=0 Let x=t+4 t^3 −21t−37=0 The Trigonometric Solution gives these: x_1 =4−2(√7)cos ((π+2sin^(−1) ((37(√7))/(98)))/6) x_2 =4−2(√7)sin ((sin^(−1) ((37(√7))/(98)))/3) x_3 =4+2(√7)sin ((π+sin^(−1) ((37(√7))/(98)))/3) Prove these identities: x_1 =2−((1+2sin (π/(18)))/(2cos (π/9))) x_2 =2+((1+2cos (π/9))/(2cos ((2π)/9))) x_3 =((1+2(√3)sin ((2π)/9))/(2sin (π/(18))))

Relatingtoquestion207407x312x2+27x17=0Letx=t+4t321t37=0TheTrigonometricSolutiongivesthese:x1=427cosπ+2sin1377986x2=427sinsin1377983x3=4+27sinπ+sin1377983Provetheseidentities:x1=21+2sinπ182cosπ9x2=2+1+2cosπ92cos2π9x3=1+23sin2π92sinπ18

Question Number 207065    Answers: 1   Comments: 0

f(x)=[cos2x+cos3x][cos4x+cos6x][[cosx+cos5x] evaluar f(((2π)/(13)))

f(x)=[cos2x+cos3x][cos4x+cos6x][[cosx+cos5x]evaluarf(2π13)

Question Number 206971    Answers: 1   Comments: 0

Construct an angle whose sine is (3/(2 + (√5))) .

Constructananglewhosesineis32+5.

Question Number 206970    Answers: 2   Comments: 0

If sinθ = ((m^2 + 2mn)/(m^2 + 2mn + 2n^2 )) then prove that tanθ = ((m^2 + 2mn)/(2mn + 2n^2 )) .

Ifsinθ=m2+2mnm2+2mn+2n2thenprovethattanθ=m2+2mn2mn+2n2.

Question Number 206899    Answers: 3   Comments: 0

If tanθ = ((2x(x + 1))/(2x + 1)) then find sinθ and cosθ.

Iftanθ=2x(x+1)2x+1thenfindsinθandcosθ.

Question Number 206833    Answers: 3   Comments: 0

Question Number 206787    Answers: 0   Comments: 1

Question Number 206727    Answers: 0   Comments: 0

Question Number 206618    Answers: 2   Comments: 0

If A = sin^4 θ + cos^4 θ then select the correct option: i) 0 < A < (1/2) ii) 1 < A < (3/2) iii) (1/2) ≤ A ≤ 1 iv) (3/2) ≤ A ≤ 2

IfA=sin4θ+cos4θthenselectthecorrectoption:i)0<A<12ii)1<A<32iii)12A1iv)32A2

Question Number 206500    Answers: 2   Comments: 0

If asin^2 θ + bcos^2 θ = c, bsin^2 φ + acos^2 φ = d and atanθ = btanφ then prove that (1/a) + (1/b) = (1/c) + (1/d) .

Ifasin2θ+bcos2θ=c,bsin2ϕ+acos2ϕ=dandatanθ=btanϕthenprovethat1a+1b=1c+1d.

Question Number 206471    Answers: 1   Comments: 0

If asinθ = bcosθ = ((2ctanθ)/(1 − tan^2 θ)) then prove that (a^2 − b^2 )^2 = 4c^2 (a^2 + b^2 ).

Ifasinθ=bcosθ=2ctanθ1tan2θthenprovethat(a2b2)2=4c2(a2+b2).

Question Number 206434    Answers: 1   Comments: 0

If tan^2 θ = 1 − x^2 then prove that secθ + tan^3 θcosecθ = (√((2 − x^2 )^3 )) .

Iftan2θ=1x2thenprovethatsecθ+tan3θcosecθ=(2x2)3.

Question Number 206421    Answers: 1   Comments: 0

If tanpθ = ptanθ then prove that ((sin^2 pθ)/(sin^2 θ)) = (p^2 /(1 + (p^2 − 1)sin^2 θ)) .

Iftanpθ=ptanθthenprovethatsin2pθsin2θ=p21+(p21)sin2θ.

Question Number 206362    Answers: 2   Comments: 0

sin(π/7) × sin((2π)/7) × sin((3π)/7) = ?

sinπ7×sin2π7×sin3π7=?

Question Number 206048    Answers: 1   Comments: 0

Prove that 2^(sin^2 θ) + 2^(cos^2 θ) ≥ 2(√2).

Provethat2sin2θ+2cos2θ22.

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com