Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67969 by behi83417@gmail.com last updated on 02/Sep/19

Two triangles △_1  and △_2  are given,such   that length of sides of triangle 1,are   equail to length of medians of triangle 2.  1.find  the ratio of areas of  triangles.  2.given that small side of △_1 , be equail to:(√2)  and one angle be:90^• .  find at least one angle of △_2 .  3.solve part#2,if replace: △_2 with: △_1 .  4.solve part#2,if great side of:△_1 ,be equail   to :(√2).

Twotriangles1and2aregiven,suchthatlengthofsidesoftriangle1,areequailtolengthofmediansoftriangle2.1.findtheratioofareasoftriangles.2.giventhatsmallsideof1,beequailto:2andoneanglebe:90.findatleastoneangleof2.You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math modeto:2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com