Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 69236 by ~ À ® @ 237 ~ last updated on 21/Sep/19

Use  Residus theorem to prove that ∀ a>0  Σ_(n=0) ^∞  (1/( n^2 +a^2 )) = (1/2)((π/(ash(πa)))   −(1/a^2 ))  and      Σ_(n=0) ^∞  (((−1)^n )/(n^2 +a^2 )) = (1/2)((( π)/(a.th(πa))) −(1/a^2 ))     Assume that we can developp in integer serie the functions  f(x)=(x/(shx))   and g(x)=(x/(thx))    Give the DL_2  of  f and g around zero   Why can′t we use that theorem to explicit  f(a)=Σ_(n=0) ^∞ (((−1)^n )/( (2n+1)^2 +a^2 ))   ???

UseResidustheoremtoprovethata>0n=01n2+a2=12(πash(πa)1a2)andn=0(1)nn2+a2=12(πa.th(πa)1a2)Assumethatwecandeveloppinintegerseriethefunctionsf(x)=xshxandg(x)=xthxGivetheDL2offandgaroundzeroWhycantweusethattheoremtoexplicitf(a)=n=0(1)n(2n+1)2+a2???

Terms of Service

Privacy Policy

Contact: info@tinkutara.com