Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 66279 by gunawan last updated on 12/Aug/19

Value of maximum  f(x)=^2 log(x+5)+^2 log(3−x)  is...  a.4  b.8  c. 12  d. 15  e. 16

Valueofmaximumf(x)=2log(x+5)+2log(3x)is...a.4b.8c.12d.15e.16

Commented by mathmax by abdo last updated on 12/Aug/19

f(x)=log_2 (x+5)+log_2 (3−x)     x∈D_f ⇔x+5>0 and 3−x>0 ⇔−5<x<3 ⇒D_f =]−5,3[  f(x) =(1/(ln(2))){ln(x+5)+ln(3−x)} ⇒f^′ (x)=(1/(ln2)){(1/(x+5))−(1/(3−x))}  =(1/(ln2)){((3−x−x−5)/((x+5)(3−x)))} =(1/(ln(2))){((−2−2x)/((x+5)(3−x)))}  =((−2)/(ln2)){((x+1)/((x+5)(3−x)))} so f^′ (x)=0 ⇔x=−1  variation of f(x)   x         −5                   −1                            3  f^′ (x)                 +          0       −  f(x)   −∞     inc     f(−1)decr        −∞  max f(x)=  f(−1)=(1/(ln(2))){2ln(2)+2ln(2)} =4  x∈D_f   the correct answer is a)

f(x)=log2(x+5)+log2(3x)xDfx+5>0and3x>05<x<3Df=]5,3[f(x)=1ln(2){ln(x+5)+ln(3x)}f(x)=1ln2{1x+513x}=1ln2{3xx5(x+5)(3x)}=1ln(2){22x(x+5)(3x)}=2ln2{x+1(x+5)(3x)}sof(x)=0x=1variationoff(x)x513f(x)+0f(x)incf(1)decrmaxf(x)=f(1)=1ln(2){2ln(2)+2ln(2)}=4xDfthecorrectanswerisa)

Answered by Kunal12588 last updated on 12/Aug/19

y=log_2 (x+5)+log_2 (3−x)  ⇒y=(1/(ln 2))(ln(x+5)+ln(3−x))  ⇒y′=(1/(ln 2))((1/(x+5))+((−1)/(3−x)))=((3−x−x−5)/(ln2(x+5)(3−x)))  ⇒y′=((−2−2x)/(ln2(x+5)(3−x)))  for max or min  y′=((−2−2x)/(ln2(x+5)(3−x)))=0⇒(−2−2x)=0  ⇒x=−1  y′′=(((x+5)(3−x)(−2)−(−2−2x)(d/dx)(x+5)(3−x))/(ln2(x+5)^2 (3−x)^2 ))  putting x=−1  ⇒y′′=(((4)(4)(−2)−0)/(ln2(x+5)^2 (3−x)^2 ))<0  ∴x=−1 is point of maxima  ∴max of f(x)=f(−1)=log_2 (4)+log_2 (4)=4

y=log2(x+5)+log2(3x)y=1ln2(ln(x+5)+ln(3x))y=1ln2(1x+5+13x)=3xx5ln2(x+5)(3x)y=22xln2(x+5)(3x)formaxorminy=22xln2(x+5)(3x)=0(22x)=0x=1y=(x+5)(3x)(2)(22x)ddx(x+5)(3x)ln2(x+5)2(3x)2puttingx=1y=(4)(4)(2)0ln2(x+5)2(3x)2<0x=1ispointofmaximamaxoff(x)=f(1)=log2(4)+log2(4)=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com