Question and Answers Forum

All Questions   Topic List

VectorQuestion and Answers: Page 1

Question Number 217079    Answers: 1   Comments: 0

((6C3×4C1)/(15C4))

6C3×4C115C4

Question Number 216647    Answers: 0   Comments: 0

∫_0 ^(π/2) (dx/((acos^2 x+bsin^2 x)^n ))

0π2dx(acos2x+bsin2x)n

Question Number 215418    Answers: 1   Comments: 0

Question Number 214838    Answers: 2   Comments: 3

Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k

Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k

Question Number 214793    Answers: 4   Comments: 2

Question Number 213817    Answers: 0   Comments: 1

Question Number 212131    Answers: 0   Comments: 0

Question Number 211558    Answers: 1   Comments: 0

−−−−−−−−−−−− 𝛀= Σ_(n=0) ^∞ ((1/(3n+2)) −(1/(3n+1)) )= a𝛑 ⇒ a^2 = ? −−−−−−−−−−−−

Ω=n=0(13n+213n+1)=aπa2=?

Question Number 210927    Answers: 0   Comments: 0

Question Number 210787    Answers: 6   Comments: 0

{ (( If, D : x^2 +y^( 2) + z^( 2) ≤1)),(( ⇒∫∫_D^ ∫(( x^2 + 2y^( 2) )/(x^2 + 4y^2 +z^2 )) dxdydz=?)) :}

{If,D:x2+y2+z21Dx2+2y2x2+4y2+z2dxdydz=?

Question Number 210566    Answers: 1   Comments: 0

Prove that: if (x∈]−(π/2),(π/2)[ y =∫^( x) _( 0) (dt/(cos(t))) ) ⇒ (y∈IR x =∫^( y) _( 0) (dt/(cosh(t))) )

Provethat:if(x]π2,π2[y=0xdtcos(t))(yIRx=0ydtcosh(t))

Question Number 208931    Answers: 1   Comments: 0

Question Number 208395    Answers: 0   Comments: 0

Question Number 208387    Answers: 0   Comments: 2

Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j

Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j

Question Number 207901    Answers: 1   Comments: 0

Question Number 206779    Answers: 2   Comments: 0

Question Number 206227    Answers: 1   Comments: 0

OA=(4^x ) OB=_7 ^5 and AB=5 units

OA=(4x)OB=75andAB=5units

Question Number 205820    Answers: 1   Comments: 0

(((√3)),(1) ) and ((1),((√3)) ) vector find θ=?

(31)and(13)vectorfindθ=?

Question Number 205321    Answers: 1   Comments: 0

a^→ =i^ +3j^ +4k^ b^→ =2i^ −3j^ +4k^ c^→ =5i^ −2j^ +4k^ given that p^→ ×b^→ =b^→ ×c^→ and p^→ .b^→ =0 then the value of p^→ (i^ −j^ +k^ )is

a=i^+3j^+4k^b=2i^3j^+4k^c=5i^2j^+4k^giventhatp×b=b×candp.b=0thenthevalueofp(i^j^+k^)is

Question Number 205164    Answers: 1   Comments: 0

Find the determinant: determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x)))

Findthedeterminant:|1x23n12x3n123xn123nx|

Question Number 205156    Answers: 1   Comments: 0

Find the determinant: determinant ((5,3,0,0,…,0,0),(2,5,3,0,…,0,0),(0,2,5,3,…,0,0),(⋮,⋮,⋮,⋮,⋱,⋮,⋮),(0,0,0,0,…,5,3),(0,0,0,0,…,2,5))

Findthedeterminant:|530000253000025300000053000025|

Question Number 204509    Answers: 0   Comments: 0

Question Number 203419    Answers: 0   Comments: 4

Question Number 202035    Answers: 0   Comments: 0

Question Number 201526    Answers: 1   Comments: 0

Question Number 201135    Answers: 1   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com