Question and Answers Forum |
VectorQuestion and Answers: Page 1 |
((6C3×4C1)/(15C4)) |
∫_0 ^(π/2) (dx/((acos^2 x+bsin^2 x)^n )) |
![]() |
Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k |
![]() |
![]() |
![]() |
−−−−−−−−−−−− 𝛀= Σ_(n=0) ^∞ ((1/(3n+2)) −(1/(3n+1)) )= a𝛑 ⇒ a^2 = ? −−−−−−−−−−−− |
![]() |
{ (( If, D : x^2 +y^( 2) + z^( 2) ≤1)),(( ⇒∫∫_D^ ∫(( x^2 + 2y^( 2) )/(x^2 + 4y^2 +z^2 )) dxdydz=?)) :} |
Prove that: if (x∈]−(π/2),(π/2)[ y =∫^( x) _( 0) (dt/(cos(t))) ) ⇒ (y∈IR x =∫^( y) _( 0) (dt/(cosh(t))) ) |
![]() |
![]() |
Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j |
Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j |
![]() |
![]() |
OA=(4^x ) OB=_7 ^5 and AB=5 units |
(((√3)),(1) ) and ((1),((√3)) ) vector find θ=? |
a^→ =i^ +3j^ +4k^ b^→ =2i^ −3j^ +4k^ c^→ =5i^ −2j^ +4k^ given that p^→ ×b^→ =b^→ ×c^→ and p^→ .b^→ =0 then the value of p^→ (i^ −j^ +k^ )is |
Find the determinant: determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x))) |
Find the determinant: determinant ((5,3,0,0,…,0,0),(2,5,3,0,…,0,0),(0,2,5,3,…,0,0),(⋮,⋮,⋮,⋮,⋱,⋮,⋮),(0,0,0,0,…,5,3),(0,0,0,0,…,2,5)) |
![]() |
![]() |
![]() |
![]() |
![]() |