Question and Answers Forum

All Questions   Topic List

VectorQuestion and Answers: Page 5

Question Number 139992    Answers: 0   Comments: 1

Question Number 139455    Answers: 1   Comments: 0

# calculus# evaluate: 𝛗:=Ξ£_(k=1) ^∞ (((βˆ’1)^(kβˆ’1) Ξ“ ((k/2)))/(k Ξ“(((k+1)/2)))) =?

You can't use 'macro parameter character #' in math modeevaluate:Ο•:=βˆ‘βˆžk=1(βˆ’1)kβˆ’1Ξ“(k2)kΞ“(k+12)=?

Question Number 138976    Answers: 1   Comments: 0

Question Number 138366    Answers: 2   Comments: 0

If x^2 +x^(βˆ’2) =(√(2+(√(2+(√2))))) x^(16) +x^(βˆ’16) =? Any help

Ifx2+xβˆ’2=2+2+2x16+xβˆ’16=?Anyhelp

Question Number 137970    Answers: 1   Comments: 0

Prove that β–½^2 𝛗=βˆ’4𝛑Gρ Ο†=Potential of Gravitational field ρ=Density G=Universal Gravitational Constant

Provethatβ–½2Ο•=βˆ’4Ο€Gρϕ=PotentialofGravitationalfieldρ=DensityG=UniversalGravitationalConstant

Question Number 136300    Answers: 3   Comments: 0

Let vector a^β†’ , b^β†’ and c^β†’ such that ∣a^β†’ ∣=∣b^β†’ ∣=((∣c^β†’ ∣)/2) and a^β†’ Γ—(a^β†’ Γ—c^β†’ )+b^β†’ =0 find the acute angle between a^β†’ and c^β†’ .

Letvectoraβ†’,bβ†’andcβ†’suchthat∣aβ†’βˆ£=∣bβ†’βˆ£=∣cβ†’βˆ£2andaβ†’Γ—(aβ†’Γ—cβ†’)+bβ†’=0findtheacuteanglebetweenaβ†’andcβ†’.

Question Number 135965    Answers: 0   Comments: 2

Vector Three vectors satisfy a.b = b.c = c.a = -1 and a + b + c = 0. What is the magnitude of vector a, b , and c?

VectorThree vectors satisfy a.b = b.c = c.a = -1 and a + b + c = 0. What is the magnitude of vector a, b , and c?

Question Number 135821    Answers: 4   Comments: 0

....nice ..... calculus.... prove that :: 𝛗=∫_0 ^( 1) (((ln(1βˆ’x))/(1βˆ’(√(1βˆ’x)))))dx=4(1βˆ’ΞΆ(2))

....nice.....calculus....provethat::Ο•=∫01(ln(1βˆ’x)1βˆ’1βˆ’x)dx=4(1βˆ’ΞΆ(2))

Question Number 135790    Answers: 0   Comments: 0

Find the component form of the vector that reprecents the velocity of an airplane descending at speed of 150 miles per hour at angle 20Β° below the horizontal

Findthecomponentformofthevectorthatreprecentsthevelocityofanairplanedescendingatspeedof150milesperhouratangle20Β°belowthehorizontal

Question Number 135423    Answers: 1   Comments: 0

If a^β†’ =(4,2,βˆ’1), b^β†’ =(m,1,1) c^β†’ =(3^ βˆ’1,0) are three vectors then find the value of m such that a^β†’ ,b^β†’ and c^β†’ are coplanar and find a^β†’ Γ—(b^β†’ Γ—c^β†’ ).

Ifaβ†’=(4,2,βˆ’1),bβ†’=(m,1,1)cβ†’=(3Β―βˆ’1,0)arethreevectorsthenfindthevalueofmsuchthataβ†’,bβ†’andcβ†’arecoplanarandfindaβ†’Γ—(bβ†’Γ—cβ†’).

Question Number 133925    Answers: 2   Comments: 0

Given vector a^β†’ = i^ βˆ’2j^ +k^ , b^β†’ = 2i^ +j^ βˆ’2k^ , c^β†’ =βˆ’i^ +3j^ βˆ’k^ and d^β†’ = 2j^ βˆ’2k^ . Find the value of (a^β†’ Γ—b^β†’ )Γ—(c^β†’ Γ—d^β†’ ).

Givenvectoraβ†’=i^βˆ’2j^+k^,bβ†’=2i^+j^βˆ’2k^,cβ†’=βˆ’i^+3j^βˆ’k^anddβ†’=2j^βˆ’2k^.Findthevalueof(aβ†’Γ—bβ†’)Γ—(cβ†’Γ—dβ†’).

Question Number 133857    Answers: 2   Comments: 0

.....#advanced ............... calculus#..... prove that ::: 𝛗=∫_0 ^( 1) ((ln^2 (1βˆ’x))/x)dx=^? 2ΞΆ(3) =^(1βˆ’x=t) ∫_0 ^( 1) ((ln^2 (t))/(1βˆ’t))dt=∫_0 ^( 1) Ξ£_(n=0) ^∞ ln^2 (t).t^n dt =Ξ£_(n=0) ^∞ {[(t^(n+1) /(n+1))ln^2 (t)]_0 ^1 βˆ’(2/(n+1))∫_0 ^( 1) t^n ln(t) =βˆ’2Ξ£_(n=0) ^∞ (1/(n+1)){[(t^(n+1) /(n+1))ln(t)]_0 ^1 βˆ’(1/(n+1))∫_0 ^( 1) t^n dt} =2Ξ£_(n=0) ^∞ (1/((n+1)^3 ))=2Ξ£_(n=1) ^∞ (1/n^3 )=2ΞΆ(3) .................... 𝛗=2ΞΆ(3) .................... ..........m.n.july.1970.........

You can't use 'macro parameter character #' in math modeprovethat:::Ο•=∫01ln2(1βˆ’x)xdx=?2ΞΆ(3)=1βˆ’x=t∫01ln2(t)1βˆ’tdt=∫01βˆ‘βˆžn=0ln2(t).tndt=βˆ‘βˆžn=0{[tn+1n+1ln2(t)]01βˆ’2n+1∫01tnln(t)=βˆ’2βˆ‘βˆžn=01n+1{[tn+1n+1ln(t)]01βˆ’1n+1∫01tndt}=2βˆ‘βˆžn=01(n+1)3=2βˆ‘βˆžn=11n3=2ΞΆ(3)....................Ο•=2ΞΆ(3)..............................m.n.july.1970.........

Question Number 133199    Answers: 4   Comments: 0

Question Number 132972    Answers: 2   Comments: 0

Question Number 132920    Answers: 1   Comments: 0

lim_(xβ†’0) ((2sin xβˆ’sin 2x)/(xβˆ’sin x))

limxβ†’02sinxβˆ’sin2xxβˆ’sinx

Question Number 132856    Answers: 1   Comments: 0

Given vector a^β†’ = i^ +j^ +k^ , c^β†’ =j^ βˆ’k^ ; a^β†’ Γ— b^β†’ = c^β†’ and a^β†’ .b^β†’ = 3 then ∣b^β†’ ∣ = ?

Givenvectoraβ†’=i^+j^+k^,cβ†’=j^βˆ’k^;aβ†’Γ—bβ†’=cβ†’andaβ†’.bβ†’=3then∣bβ†’βˆ£=?

Question Number 132853    Answers: 1   Comments: 0

Find the point on the paraboloid z = x^2 +y^2 which is closest to the point (3,βˆ’6,4 )

Findthepointontheparaboloidz=x2+y2whichisclosesttothepoint(3,βˆ’6,4)

Question Number 132830    Answers: 0   Comments: 0

Question Number 132650    Answers: 1   Comments: 5

Question Number 132259    Answers: 0   Comments: 0

Question Number 131695    Answers: 0   Comments: 0

Question Number 130889    Answers: 1   Comments: 0

... advanced mathematcs ... prove that:: Ξ£_(n=1) ^∞ (((βˆ’1)^n )/(1+n^2 )) =((csch(Ο€)βˆ’1)/2)

...advancedmathematcs...provethat::βˆ‘βˆžn=1(βˆ’1)n1+n2=csch(Ο€)βˆ’12

Question Number 130573    Answers: 0   Comments: 0

Question Number 130523    Answers: 1   Comments: 0

Question Number 130537    Answers: 1   Comments: 0

Question Number 129804    Answers: 1   Comments: 0

If p^β†’ =2i^ +5j^ +6k^ q^β†’ =3i^ +6j^ +8k^ r^β†’ =2i^ +6j^ +10k^ find p^β†’ Γ—q^β†’ Γ—r^β†’ ?

Ifp→=2i^+5j^+6k^q→=3i^+6j^+8k^r→=2i^+6j^+10k^findp→×q→×r→?

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com