Question and Answers Forum

All Questions   Topic List

Vector CalculusQuestion and Answers: Page 3

Question Number 128823    Answers: 0   Comments: 1

Question Number 128691    Answers: 0   Comments: 1

find∫∫_S ▽×F .n^ ds where F^→ =y^2 i^ +yj^ −xzk^ and S is the upper half of the sphere x^2 +y^2 +z^2 =a^2

findS×F.nds^whereF=y2i^+yj^xzk^andSistheupperhalfofthespherex2+y2+z2=a2

Question Number 128688    Answers: 0   Comments: 0

find the flux of the vector field F=xi^ +yj^ +(√(x^2 +y^2 −1 k^ )) through outer side of hyper−boloide z=(√(x^2 +y^2 −1)) bounded by the planes z=0 and z=(√3)

findthefluxofthevectorfieldF=xi^+yj^+x2+y21k^throughoutersideofhyperboloidez=x2+y21boundedbytheplanesz=0andz=3

Question Number 128592    Answers: 1   Comments: 0

∫∫∫_V ▽×F dV where F=(x+2y)i^ −3zj^ +xk^ and V is the closed region in first octant by the plane 2x+2y+2z=4

V×FdVwhereF=(x+2y)i^3zj^+xk^andVistheclosedregioninfirstoctantbytheplane2x+2y+2z=4

Question Number 128591    Answers: 0   Comments: 1

verify the gauss divergence theorem f=(x^2 −yz)i^ +(y^2 −zx)j^ +(z^2 −xy)k^ over the region R bounded by the parallelepiped 0≤x≤a,0≤y≤b, 0≤z≤c

verifythegaussdivergencetheoremf=(x2yz)i^+(y2zx)j^+(z2xy)k^overtheregionRboundedbytheparallelepiped0xa,0yb,0zc

Question Number 128282    Answers: 1   Comments: 0

Question Number 128234    Answers: 0   Comments: 0

Question Number 126646    Answers: 1   Comments: 1

Question Number 126572    Answers: 1   Comments: 0

Question Number 126443    Answers: 0   Comments: 0

Question Number 125672    Answers: 1   Comments: 0

N=x32y in base 10. N≡0[3] and N≡0[4]. N>8329 N has four digits. Determinate N.

N=x32yinbase10.N0[3]andN0[4].N>8329Nhasfourdigits.DeterminateN.

Question Number 124682    Answers: 0   Comments: 0

Given { ((u_0 =5)),(( u_(n+1) =3u_n −4)) :} 1. show that ∀ n∈N, u_n =2+3^u_(n+1) a. Deduct that u_n is odd. c. Show that GCD(u_n ;u_(n+1) )=1 d. Deduct GCD(6+3^(1002) ;6+3^(1003) ). GCD=greatest common divisor^

Given{u0=5un+1=3un41.showthatnN,un=2+3un+1a.Deductthatunisodd.c.ShowthatGCD(un;un+1)=1d.DeductGCD(6+31002;6+31003).GCD=greatestcommondivisor

Question Number 122358    Answers: 1   Comments: 0

Given a, b ∈[0;4] 309a+15c=226b 1) show that 2b≡0[3] and 3a≡1[5]

Givena,b[0;4]309a+15c=226b1)showthat2b0[3]and3a1[5]

Question Number 122189    Answers: 0   Comments: 0

Given that the forces F_1 , F_2 and F_3 have position vectors r_1 , r_2 and r_3 . Where, F_1 = (2i + 3i + k) N r_1 = (i + 2k) m F_2 = (3i + 2i + 5k) N r_2 = (2i − 4j + k) m F_3 = (−5i−5j −6k) N r_3 = (4i + 3j + 2k) m (a) Find the moment of F_1 about (2i + 3j + 4k) m. (b) Show that this system of forces reduces to a couple, G, and find the magnitude of this couple. (c) Check if F_1 and F_2 are concurrent.

GiventhattheforcesF1,F2andF3havepositionvectorsr1,r2andr3.Where,F1=(2i+3i+k)Nr1=(i+2k)mF2=(3i+2i+5k)Nr2=(2i4j+k)mF3=(5i5j6k)Nr3=(4i+3j+2k)m(a)FindthemomentofF1about(2i+3j+4k)m.(b)Showthatthissystemofforcesreducestoacouple,G,andfindthemagnitudeofthiscouple.(c)CheckifF1andF2areconcurrent.

Question Number 121188    Answers: 0   Comments: 0

N is written 158b687a in base 10. with a<b. show that N≡2+a[4]

Niswritten158b687ainbase10.witha<b.showthatN2+a[4]

Question Number 119184    Answers: 0   Comments: 0

Nama : Attila Abiem Farhan Kelas : XI BKP Tugas KD 3.18 MTK 1. jawab : u^→ = (((−3)),((−4)),(( 12)) ) ∣u^→ ∣=(√((−3^2 )+(−4)^2 +12^2 )) =(√(9+16+144)) =(√(169))=13 2. jawab : a^→ = ((2),((−1)),(3) ) b^→ = ((7),((13)),(5) ) a^→ +b^→ = ((9),((12)),(8) ) ∣a^→ +b^→ ∣=(√(9^2 +12^2 +8^2 )) =(√(81+144+64)) =(√(289)) 3. jawab u^→ = ((7),(9),((−17)) ) v^→ = (((−2)),((−3)),((19)) ) u^→ −v^→ = ((9),((12)),((36)) ) ∣u^→ +v^→ ∣=(√(9^2 +12^2 +36^2 )) =(√(81+144+1296)) =(√(1521)) 4. jawab : A. 2a^→ = (((−6)),((−8)),((−24)) ) ∣2a^→ ∣=(√((−6)^2 +(−8)^2 +(−24)^2 )) =(√(36+64+576)) =(√(676)) =26 (1/2)b^→ = ((3),(4),((12)) ) ∣(1/2)b^→ ∣=(√(3^2 +4^2 +12^2 ))=(√(9+16+144))=(√(169))=13 B. 4a^→ +b^→ = (((−12)),((−16)),((−48)) ) + ((6),(8),((24)) ) = (((−6)),((−8)),((−24)) ) ∣4a^→ +b^→ ∣=(√((−6)^2 +(−8)^2 +(−24)^2 )) =(√(36+64+576)) =(√(676))=26 5. jawab : u^→ =8i+3k v^→ =5j−9k u^→ .v^→ =(8.0)i+(0.5)j+(3.−9)k =0+0−27k u^→ .v^→ =−27k

Nama:AttilaAbiemFarhanKelas:XIBKPTugasKD3.18MTK1.jawab:u=(3412)u∣=(32)+(4)2+122=9+16+144=169=132.jawab:a=(213)b=(7135)a+b=(9128)a+b∣=92+122+82=81+144+64=2893.jawabu=(7917)v=(2319)uv=(91236)u+v∣=92+122+362=81+144+1296=15214.jawab:A.2a=(6824)2a∣=(6)2+(8)2+(24)2=36+64+576=676=2612b=(3412)12b∣=32+42+122=9+16+144=169=13B.4a+b=(121648)+(6824)=(6824)4a+b∣=(6)2+(8)2+(24)2=36+64+576=676=265.jawab:u=8i+3kv=5j9ku.v=(8.0)i+(0.5)j+(3.9)k=0+027ku.v=27k

Question Number 119054    Answers: 2   Comments: 0

Show by recurence that: 5^n ≥1+4n ; n∈N

Showbyrecurencethat:5n1+4n;nN

Question Number 118747    Answers: 4   Comments: 0

find the distance of point (2,1,−2) to plane passing through points (−1,2,−3); (0,−4,−2) and (1,3,4).

findthedistanceofpoint(2,1,2)toplanepassingthroughpoints(1,2,3);(0,4,2)and(1,3,4).

Question Number 118017    Answers: 0   Comments: 0

Question Number 117493    Answers: 1   Comments: 0

∫_c (3xy−e^(sin x) )dx+(7x+(√(y^4 +1)) )dy C : triangle with vertex (0,0),(0,1) and (1,0)

c(3xyesinx)dx+(7x+y4+1)dyC:trianglewithvertex(0,0),(0,1)and(1,0)

Question Number 116094    Answers: 1   Comments: 0

Question Number 114043    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (1/(n^3 +1))

n=11n3+1

Question Number 110320    Answers: 3   Comments: 0

find the point of intersection of the line r^→ =(1−2t,3+4t,t) and the plane 3x−2y+5z=15

findthepointofintersectionoftheliner=(12t,3+4t,t)andtheplane3x2y+5z=15

Question Number 108104    Answers: 1   Comments: 0

Question Number 104060    Answers: 1   Comments: 0

evaluate ∫∫_s (xz+y^2 )dS where S is the surface described by x^2 +y^2 =16 , 0≤z≤3

evaluates(xz+y2)dSwhereSisthesurfacedescribedbyx2+y2=16,0z3

Question Number 102474    Answers: 1   Comments: 0

Un=(1+(√2))^n show that we have p_n ∈N / U_n =(√p_n )+(√(p_n +1))

Un=(1+2)nshowthatwehavepnN/Un=pn+pn+1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com