Question and Answers Forum

All Questions   Topic List

Vector CalculusQuestion and Answers: Page 4

Question Number 100320    Answers: 1   Comments: 0

Evaluate ∫∫_s F^→ .n^ dS where F^→ =4xi^ −2y^2 j^ +z^2 k^ and S is the surface of the cylinder bounded by x^2 +y^2 =4 ,z = 0 and z=3 .

EvaluatesF.n^dSwhereF=4xi^2y2j^+z2k^andSisthesurfaceofthecylinderboundedbyx2+y2=4,z=0andz=3.

Question Number 100074    Answers: 1   Comments: 0

Question Number 98119    Answers: 0   Comments: 1

Find the shortest distance between the skew lines ((x−3)/3) = ((8−y)/1) = ((z−3)/1) and ((x+3)/(−3)) = ((y+7)/2) = ((z−6)/4) .

Findtheshortestdistancebetweentheskewlinesx33=8y1=z31andx+33=y+72=z64.

Question Number 97901    Answers: 2   Comments: 2

Question Number 97353    Answers: 5   Comments: 0

Question Number 95509    Answers: 2   Comments: 0

find the angle of plane 2x−y+2z=1 and x+3y−2z = 2

findtheangleofplane2xy+2z=1andx+3y2z=2

Question Number 92143    Answers: 0   Comments: 1

fond∫((2x)/(1+x^2 ))dx

fond2x1+x2dx

Question Number 92138    Answers: 2   Comments: 0

∫(dx/(1+x^2 ))

dx1+x2

Question Number 84969    Answers: 0   Comments: 0

let c is a constant vector and r^→ =xi^ +yj^ +zk^ then proved that grad ∣c×r^→ ∣^n =n∣c×r^→ ∣^(n−2) c×(r^→ ×c).

letcisaconstantvectorandr=xi^+yj^+zk^thenprovedthatgradc×rn=nc×rn2c×(r×c).

Question Number 84624    Answers: 1   Comments: 0

find grad r^m where r=x^2 +y^2 +z^2

findgradrmwherer=x2+y2+z2

Question Number 80402    Answers: 0   Comments: 0

Question Number 78522    Answers: 0   Comments: 10

what is the line passing through (2,2,1) and parallel to 2i^ − j^ − k^ ?

whatisthelinepassingthrough(2,2,1)andparallelto2i^j^k^?

Question Number 76302    Answers: 1   Comments: 0

given vektor a=(3,x,−2) b=(−6,−2,y) . what the value x and y if a and b are parallel?

givenvektora=(3,x,2)b=(6,2,y).whatthevaluexandyifaandbareparallel?

Question Number 75101    Answers: 4   Comments: 2

the vector equations of two lines L_1 and L_2 is given by L_1 :r= i−j+3k + λ(i−j +k) L_2 : r= 2i+aj + 6k + μ(2i + j + 3k) where a,λ,μ are real constants. given that L_1 and L_2 intersect find a. the value of the constant a. b. the position vector of the point of intersection between L_1 and L_2 c. the cosine of the acute angle between L_1 and L_2 please help

thevectorequationsoftwolinesL1andL2isgivenbyL1:r=ij+3k+λ(ij+k)L2:r=2i+aj+6k+μ(2i+j+3k)wherea,λ,μarerealconstants.giventhatL1andL2intersectfinda.thevalueoftheconstanta.b.thepositionvectorofthepointofintersectionbetweenL1andL2c.thecosineoftheacuteanglebetweenL1andL2pleasehelp

Question Number 71198    Answers: 0   Comments: 0

A particle P is projected from a point O at the edge of a cliff 60m from the sea with a velocity of 30ms^(−1) . When P is at a point B where OB is a horizontal, another particle Qsuch that P and Q hit the sea simultaneously at thesame point A. Gven that they strike the sea 6seconds after P was fired ^ calculate a) the sine of the angle of elevation of projection. b) the distance from A to O. c) the time of flight of Q. d) the Range . (take g = 10ms^(−2) ) please help

AparticlePisprojectedfromapointOattheedgeofacliff60mfromtheseawithavelocityof30ms1.WhenPisatapointBwhereOBisahorizontal,anotherparticleQsuchthatPandQhittheseasimultaneouslyatthesamepointA.Gventhattheystrikethesea6secondsafterPwasfired¯calculatea)thesineoftheangleofelevationofprojection.b)thedistancefromAtoO.c)thetimeofflightofQ.d)theRange.(takeg=10ms2)pleasehelp

Question Number 70876    Answers: 0   Comments: 0

Prove that The necessary and sufficient condition that the curve be plane (curve) is [r′,r′′,r′′′]=0. OR A curve is plane curve iff τ=0.

ProvethatThenecessaryandsufficientconditionthatthecurvebeplane(curve)is[r,r,r]=0.ORAcurveisplanecurveiffτ=0.

Question Number 68836    Answers: 1   Comments: 0

Show that the graph of r = (sin t)i + (2cos t)j + ((√3)sin t)k is a circle

Showthatthegraphofr=(sint)i+(2cost)j+(3sint)kisacircle

Question Number 65797    Answers: 1   Comments: 0

find the constant a,b and c so that the direction derivative of Φ=axy^2 +byz+cz^2 x^3 at (1,2,−1) has a maximum of magnitude 64 jn a direction parallel to the z axis.

findtheconstanta,bandcsothatthedirectionderivativeofΦ=axy2+byz+cz2x3at(1,2,1)hasamaximumofmagnitude64jnadirectionparalleltothezaxis.

Question Number 65261    Answers: 0   Comments: 1

solve4−xy+yz−xz

solve4xy+yzxz

Question Number 64456    Answers: 0   Comments: 1

Question Number 64011    Answers: 1   Comments: 3

lim_(x→0) ((x^x −1)/(xlnx))

limx0xx1xlnx

Question Number 62517    Answers: 4   Comments: 2

Question Number 61258    Answers: 1   Comments: 2

Calculate, using cartesian coodinates, the following integrals: 1) ∫∫_D dxdy being D={ (x,y)∈R^2 /0≤x≤(1/2),y+x≤1,y≥0} 2) ∫∫_D x^3 ydxdy being D={(x,y)∈R^2 /0≤x≤(1/2),y+x≤1,y≥0} 3) ∫∫_D (x/y)dxdy being D={(x,y)∈R^2 /xy≤16,x≥y,x−6≤y,x≥0,y≥1} Help please!

Calculate,usingcartesiancoodinates,thefollowingintegrals:1)DdxdybeingD={(x,y)R2/0x12,y+x1,y0}2)Dx3ydxdybeingD={(x,y)R2/0x12,y+x1,y0}3)DxydxdybeingD={(x,y)R2/xy16,xy,x6y,x0,y1}Helpplease!

Question Number 60015    Answers: 0   Comments: 0

Question Number 60013    Answers: 0   Comments: 0

Question Number 59932    Answers: 0   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com