Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 76061 by tw000001 last updated on 23/Dec/19

What′s the minimum value of  ((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))?  (a,b,c are positive numbers.)  I think nobody can solve this.

Whatstheminimumvalueof13a+13b+2c2a+2b+24ab+13c2b+2c+a+24b+13c2a+2c?(a,b,carepositivenumbers.)Ithinknobodycansolvethis.

Answered by MJS last updated on 23/Dec/19

((13a+13b+2c)/(2a+2b))+((24a−b+13c)/(2b+2c))+((−a+24b+13c)/(2a+2c))=  =(c/(a+b))+((12b+7c)/(a+c))+((12a+7c)/(b+c))+((11)/2)  we see that a and b are of equal weight but  c is different  let a=pc∧b=qc  (1/(p+q))+((12q+7)/(p+1))+((12p+7)/(q+1))+((11)/2)  to ensure positive values  let p=x^2 ∧q=y^2   (1/(x^2 +y^2 ))+((12y^2 +7)/(x^2 +1))+((12x^2 +7)/(y^2 +1))+((11)/2)  now I simply tried y=x  −((10)/(x^2 +1))+(1/(2x^2 ))+((59)/2)=((59x^4 +40x^2 +1)/(2x^2 (x^2 +1)))  (d/dx)[((59x^4 +40x^2 +1)/(2x^2 (x^2 +1)))]=0  ((19x^4 −2x^2 −1)/(x^3 (x^2 +1)^2 ))=0 ⇒ x^2 =((1+2(√5))/(19))  ⇒ min ((59x^4 +40x^2 +1)/(2x^2 (x^2 +1))) =19+2(√5)≈23.472136  at a=b=((1+2(√5))/(19))c; c∈R^+

13a+13b+2c2a+2b+24ab+13c2b+2c+a+24b+13c2a+2c==ca+b+12b+7ca+c+12a+7cb+c+112weseethataandbareofequalweightbutcisdifferentleta=pcb=qc1p+q+12q+7p+1+12p+7q+1+112toensurepositivevaluesletp=x2q=y21x2+y2+12y2+7x2+1+12x2+7y2+1+112nowIsimplytriedy=x10x2+1+12x2+592=59x4+40x2+12x2(x2+1)ddx[59x4+40x2+12x2(x2+1)]=019x42x21x3(x2+1)2=0x2=1+2519min59x4+40x2+12x2(x2+1)=19+2523.472136ata=b=1+2519c;cR+

Commented by MJS last updated on 23/Dec/19

btw my name is Nobody ��

Commented by peter frank last updated on 23/Dec/19

hahahahah great man mr mjs

hahahahahgreatmanmrmjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com