Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 8347 by sou1618 last updated on 09/Oct/16

a_1 =2 ,  a_(n+1) >a_n   (a_(n+1) −a_n )^2 = 2(a_(n+1) +a_n )   a_n =??  help me please.

a1=2,an+1>an(an+1an)2=2(an+1+an)an=??helpmeplease.

Commented by sou1618 last updated on 09/Oct/16

a_(n+1) =a_n +1+(√(4a_n +1))  a_1 =2  a_2 =2+1+(√(8+1))=6  a_3 =6+1+(√(24+1))=12  a_4 =12+1+(√(48+1))=20  a_5 =20+1+(√(80+1))=30  ...  a_2 −a_1 =4  a_3 −a_2 =6  a_4 −a_3 =8  a_5 −a_4 =10  ...    a_(n+1) −a_n =2(n+1)  a_(n+1) =a_n +2n+2  ,  a_1 =2  so  a_n =2+Σ_(k=1) ^(n−1) (2n+2)  a_n =2+(2/2)n(n−1)+2(n−1)  a_n =n(n−1)+2n  a_n =n(n+1)    isn′t it strict?

an+1=an+1+4an+1a1=2a2=2+1+8+1=6a3=6+1+24+1=12a4=12+1+48+1=20a5=20+1+80+1=30...a2a1=4a3a2=6a4a3=8a5a4=10...an+1an=2(n+1)an+1=an+2n+2,a1=2soan=2+n1k=1(2n+2)an=2+22n(n1)+2(n1)an=n(n1)+2nan=n(n+1)isntitstrict?

Commented by Rasheed Soomro last updated on 12/Oct/16

(a_(n+1) −a_n )^2 = 2(a_(n+1) +a_n )⇒^(?) a_(n+1) =a_n +1+(√(4a_n +1))  Please insert some steps.

(an+1an)2=2(an+1+an)?an+1=an+1+4an+1Pleaseinsertsomesteps.

Commented by prakash jain last updated on 14/Oct/16

(a_(n+1) −a_n )^2 −2(a_(n+1) −a_n )+1−4a_n −1=0  (a_(n+1) −a_n −1)^2 =4a_n +1  a_(n+1) =1+a_n +(√(4a_n +1))  If a_n  is a polynomial then 4a_n +1 is a perfect  square of polynomial.  Let 4a_n +1=(c_0 +c_1 n+c_2 n^2 +c_3 n^3 +...+c_k n^k )^2   a_n =[(c_0 +c_1 n+c_2 n^2 +c_3 n^3 +...+c_k n^k )^2 −1]/4  a_(n+1) =[(c_0 +c_1 (n+1)+c_2 (n+1)^2 +c_3 (n+1)^3 +...)^2 −1]/4  Try for   4a_n +1=(c_0 +c_1 n+c_2 n^2 )^2   a_n =(1/4)[(c_0 +c_1 n+c_2 n^2 )^2 −1]  Equating coeffcients   n^4 : (1/4)c_2 ^2 =(1/4)c_2 ^2   n^3 :c_2 ^2 +(1/2)c_1 c_2 =(1/2)c_1 c_2 ⇒c_2 =0  No polynomial solution is  possible if 4a_n +1 is a square of degree higher  than 1.  Degree 1  4a_n +1=(c_0 +c_1 n)^2   n^2 :(1/4)c_1 ^2 =(1/4)c_1 ^2   n: (1/2)c_1 c_0 +(1/2)c_1 ^2 =(1/2)c_1 c_0 +c_1 ⇒c_1 =2  n^0 :(c_0 ^2 /4)+((c_1 c_0 )/2)+(c_1 ^2 /4)−(1/4)=(c_0 ^2 /4)+c_0 +(3/4)  ⇒c_0 +1−1/4=c_0 +3/4  a_n =((c_0 +2n)^2 −1)/4  a_1 =2⇒(c_0 +2)^2 −1=8  c_0 ^2 +4c_0 +4−1=8  c_0 ^2 +4c_0 −5=0  c_0 ^2 +5c_0 −c_0 −5=0  (c_0 −1)(c_0 +5)^2 =0  a_n = { ((((1+2n)^2 −1)/4=n^2 +n)),((((−5+2n)^2 −1)/4=n^2 −5n+6=(n−2)(n−3))) :}  check  (a_(n+1) −a_n )^2 =[(n−1)(n−2)−(n−2)(n−3)]^2   =4(n−2)^2   2(a_(n+1) +a_n )=2(n−2)(2n−4)=4(n−2)^2   comparing results   determinant ((n,(n(n+1)),((n−2)(n−3))),(1,2,2),(2,6,0),(3,(12),0),(4,(20),2),(5,(30),6))

(an+1an)22(an+1an)+14an1=0(an+1an1)2=4an+1an+1=1+an+4an+1Ifanisapolynomialthen4an+1isaperfectsquareofpolynomial.Let4an+1=(c0+c1n+c2n2+c3n3+...+cknk)2an=[(c0+c1n+c2n2+c3n3+...+cknk)21]/4an+1=[(c0+c1(n+1)+c2(n+1)2+c3(n+1)3+...)21]/4Tryfor4an+1=(c0+c1n+c2n2)2an=14[(c0+c1n+c2n2)21]Equatingcoeffcientsn4:14c22=14c22n3:c22+12c1c2=12c1c2c2=0Nopolynomialsolutionispossibleif4an+1isasquareofdegreehigherthan1.Degree14an+1=(c0+c1n)2n2:14c12=14c12n:12c1c0+12c12=12c1c0+c1c1=2n0:c024+c1c02+c12414=c024+c0+34c0+11/4=c0+3/4an=((c0+2n)21)/4a1=2(c0+2)21=8c02+4c0+41=8c02+4c05=0c02+5c0c05=0(c01)(c0+5)2=0an={((1+2n)21)/4=n2+n((5+2n)21)/4=n25n+6=(n2)(n3)check(an+1an)2=[(n1)(n2)(n2)(n3)]2=4(n2)22(an+1+an)=2(n2)(2n4)=4(n2)2comparingresults|nn(n+1)(n2)(n3)122260312042025306|

Commented by prakash jain last updated on 14/Oct/16

The second solution does not meet the  condition that a_(n+1) >a_n

Thesecondsolutiondoesnotmeettheconditionthatan+1>an

Commented by sou1618 last updated on 15/Oct/16

a_(n+1) ^( 2) −2a_(n+1) a_n +a_n ^( 2) −2a_(n+1) −2a_n =0  a_(n+1) ^( 2) −2(a_n +1)a_(n+1) +a_n ^( 2) −2a_n =0  a_(n+1) =a_n +1±(√((a_n +1)^2 −(a_n ^( 2) −2a_n )))  a_(n+1) =a_n +1±(√(4a_n +1))  ∗ a_(n+1) >a_n   so  a_(n+1) =a_n +1(√(4a_n +1))  thanks.  I have to study hard....

an+122an+1an+an22an+12an=0an+122(an+1)an+1+an22an=0an+1=an+1±(an+1)2(an22an)an+1=an+1±4an+1an+1>ansoan+1=an+14an+1thanks.Ihavetostudyhard....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com