Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191077 by Shrinava last updated on 17/Apr/23

a^→  ∙ b^(→)  = 4  b^→  ∙ c^(→)  = 5  7a^(→)  = 4b^(→)  + 2c^(→)     Find:   ∣c^(→)  ∣ = ?

ab=4bc=57a=4b+2cFind:c=?

Commented by mr W last updated on 18/Apr/23

no unique solution is possible.  are you sure the question is correct?

nouniquesolutionispossible.areyousurethequestioniscorrect?

Commented by Shrinava last updated on 18/Apr/23

yes dear professor (question wrong)

yesdearprofessor(questionwrong)

Answered by aleks041103 last updated on 18/Apr/23

⇒49a^2 =16b^2 +4c^2 +2b^→ .c^→   ⇒49a^2 =16b^2 +4c^2 +10  ⇒4c^2 =49a^2 +16b^2 −2a^→ .b^→   ⇒4c^2 =49a^2 +16b^2 −8  7a^→ .b^→ =4b^→ .b^→ +2c^→ .b^→   28=4b^2 +10⇒b^2 =(9/2)  ⇒ { ((49a^2 =82+4c^2 )),((4c^2 =49a^2 +64)) :}  ⇒49a^2 =82+49a^2 +64⇒0=146  contradiction!  ⇒no solution

49a2=16b2+4c2+2b.c49a2=16b2+4c2+104c2=49a2+16b22a.b4c2=49a2+16b287a.b=4b.b+2c.b28=4b2+10b2=92{49a2=82+4c24c2=49a2+6449a2=82+49a2+640=146contradiction!nosolution

Answered by mr W last updated on 18/Apr/23

Commented by mr W last updated on 18/Apr/23

a=∣a^→ ∣  b=∣b^→ ∣  c=∣c^→ ∣  from 7a^→ =4b^→ +2c^→ :  (a/(sin β))=((2c)/(7 sin α))=((4b)/(7 sin (β−α)))  ⇒a=((2 sin β c)/(7 sin α))  ⇒b=((sin (β−α) c)/(2 sin α))  a^→ ∙b^→ =4  ⇒ab cos α=4  ⇒((2 sin β c)/(7 sin α))×((sin (β−α) c)/(2 sin α))×cos α=4  ⇒c^2 =((28 sin^2  α)/(cos α sin β sin (β−α)))   ...(i)  b^→ ∙c^→ =5  ⇒bc cos β=5  ⇒((sin (β−α) c)/(2 sin α))×c cos β=5  ⇒c^2 =((10 sin α)/(cos β sin (β−α)))   ...(ii)  ((28 sin^2  α)/(cos α sin β sin (β−α)))=((10 sin α)/(cos β sin (β−α)))  ⇒tan α=(5/(14)) tan β  put this into (ii) we get  c^2 =((50)/(9 cos^2  β))  ⇒c=((5(√2))/(3 ∣cos β∣))  we see there is no unique value for c.  but c_(min) =((5(√2))/3).

a=∣ab=∣bc=∣cfrom7a=4b+2c:asinβ=2c7sinα=4b7sin(βα)a=2sinβc7sinαb=sin(βα)c2sinαab=4abcosα=42sinβc7sinα×sin(βα)c2sinα×cosα=4c2=28sin2αcosαsinβsin(βα)...(i)bc=5bccosβ=5sin(βα)c2sinα×ccosβ=5c2=10sinαcosβsin(βα)...(ii)28sin2αcosαsinβsin(βα)=10sinαcosβsin(βα)tanα=514tanβputthisinto(ii)wegetc2=509cos2βc=523cosβweseethereisnouniquevalueforc.butcmin=523.

Answered by manolex last updated on 18/Apr/23

(.b)    7a.b=4∣b∣^2 +2b.c  28=4∣b∣^2 +10  ∣b∣^2 =(9/2)   (.a)   7∣a∣^2 =4a.b+2a.c  ×7  (.c)     7a.c=4b.c+2∣c∣^2    ×2  49∣a∣^2 =112+14a.c  14a.c=40+4∣c∣^2   (7∣a∣−2∣c∣)(7∣a∣+2∣c∣)=152

(.b)7a.b=4b2+2b.c28=4b2+10b2=92(.a)7a2=4a.b+2a.c×7(.c)7a.c=4b.c+2c2×249a2=112+14a.c14a.c=40+4c2(7a2c)(7a+2c)=152

Commented by Shrinava last updated on 18/Apr/23

thank you so much dear professors

thankyousomuchdearprofessors

Terms of Service

Privacy Policy

Contact: info@tinkutara.com