Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 98570 by HamraboyevFarruxjon last updated on 14/Jun/20

a,b,c>0       prove:  (a/(√(a^2 +8bc)))+(b/(√(b^2 +8ac)))+(c/(√(c^2 +8ab)))≥1  help please...

a,b,c>0prove:aa2+8bc+bb2+8ac+cc2+8ab1helpplease...

Commented by MJS last updated on 14/Jun/20

extremes where a=b=c  here this leads to  3(a/(√(a^2 +8a^2 )))=1 for a>0  ⇒ min (lhs) =1 ⇒ proven

extremeswherea=b=cherethisleadsto3aa2+8a2=1fora>0min(lhs)=1proven

Answered by 1549442205 last updated on 15/Jun/20

    Applying the Cauchi−Schwartz we have  we have  P=(a/(√(a^2 +8bc)))+(b/(√(b^2 +8ca)))+(c/(√(c^2 +8ab)))=(a^2 /(a(√(a^2 +8bc))))+(b^2 /(b(√(b^2 +8ca))))+(c^2 /(c(√(c^2 +8ab))))≥(((a+b+c)^2 )/(a(√(a^2 +8bc))+b(√(b^2 +8ca))+c(√(c^2 +8ab))))   On the other hands,also by C−S we have  a(√(a^2 +8bc))+b(√(b^2 +8ca))+c(√(c^2 +8ab))=(√a).(√(a^3 +8abc))+(√b).(√(b^3 +8abc))+(√c).(√(c^3 +8abc))  ≤(√((a+b+c)(a^3 +b^3 +c^3 +24abc))).Hence,  P≥(((a+b+c)^2 )/(√((a+b+c)(a^3 +b^3 +c^3 +24abc))))=(√(((a+b+c)^3 )/(a^3 +b^3 +c^3 +24abc))).Therefore,it is enough  to prove that (((a+b+c)^3 )/(a^3 +b^3 +c^3 +24abc))≥1⇔  (a+b+c)^3 ≥a^3 +b^3 +c^3 +24abc⇔(a+b)(b+c)(c+a)≥8abc  This final inequality is always true because  it is followed from the inequlities:  a+b≥2(√(ab)) ,b+c≥2(√(bc)) ,c+a≥2(√(ca))  Thus,P≥1.The equality occurs if an only if  a=b=c(q.e.d)

ApplyingtheCauchiSchwartzwehavewehaveP=aa2+8bc+bb2+8ca+cc2+8ab=a2aa2+8bc+b2bb2+8ca+c2cc2+8ab(a+b+c)2aa2+8bc+bb2+8ca+cc2+8abOntheotherhands,alsobyCSwehaveaa2+8bc+bb2+8ca+cc2+8ab=a.a3+8abc+b.b3+8abc+c.c3+8abc(a+b+c)(a3+b3+c3+24abc).Hence,P(a+b+c)2(a+b+c)(a3+b3+c3+24abc)=(a+b+c)3a3+b3+c3+24abc.Therefore,itisenoughtoprovethat(a+b+c)3a3+b3+c3+24abc1(a+b+c)3a3+b3+c3+24abc(a+b)(b+c)(c+a)8abcThisfinalinequalityisalwaystruebecauseitisfollowedfromtheinequlities:a+b2ab,b+c2bc,c+a2caThus,P1.Theequalityoccursifanonlyifa=b=c(q.e.d)

Commented by Farruxjano last updated on 15/Jun/20

Sir thanks a lot

Sirthanksalot

Commented by 1549442205 last updated on 25/Jun/20

Thank you!you are wellcome ,sir.

Thankyou!youarewellcome,sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com