Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32039 by abdo imad last updated on 18/Mar/18

a>−1  calculate  ∫_0 ^(π/2)      (dt/(1+a tan^2 t)) .  2) find ∫_0 ^(π/2)    ((tan^2 t)/((1+atan^2 t)^2 )) dt  3)  find the value of  ∫_0 ^(π/2)     ((tan^2 t)/((1+2tan^2 t)^2 ))dt.

a>1calculate0π2dt1+atan2t.2)find0π2tan2t(1+atan2t)2dt3)findthevalueof0π2tan2t(1+2tan2t)2dt.

Commented by abdo imad last updated on 22/Mar/18

let put f(a) = ∫_0 ^(π/2)     (dt/(1+atan^2 t))  f(a) = ∫_0 ^(π/2)      (dt/(1+a((sin^2 t)/(cos^2 t)))) =  ∫_0 ^(π/2)       ((cos^2 t)/(cos^2 t +asin^2 t))dt  f(a)= ∫_0 ^(π/2)      (((1+cos(2t))/2)/(((1+cos(2t)/2) +a((1−cos(2t))/2)))dt  = ∫_0 ^(π/2)     ((1+cos(2t))/(1+cos(2t) +a(1−cos(2t)))) dt  = ∫_0 ^(π/2)    ((1+cos(2t))/(1+a +(1−a)cos(2t)))  thech. 2t =u give  f(a) = (1/2)∫_0 ^π     ((1+cos(u))/(1+a +(1−a)cos(u)))du  ch. tan((u/2))=x give  f(a) =(1/2) ∫_0 ^∞   ((1+((1−x^2 )/(1+x^2 )))/(1+a +(1−a)((1−x^2 )/(1+x^2 ))))  ((2dx)/(1+x^2 ))  f(a) = ∫_0 ^∞         (2/((1+x^2 )((1+a)(1+x^2 ) +(1−a)(1−x^2 )))dx  = ∫_0 ^∞       ((2dx)/((1+x^2 )( 1+a +(1+a)x^2  +(1−a) +(a−1)x^2 )))  = ∫_0 ^∞         ((2dx)/((1+x^2 )( 2  +2ax^2 ))) =∫_0 ^∞       (dx/((1+x^2 )(1+ax^2 )))  =(1/(1−a)) ∫_0 ^∞  ( (1/(1+x^2 )) −  (a/(1+ax^2 )))dx  f(a) =  (π/(2(1−a))) − (a/(1−a)) ∫_0 ^∞     (dx/(1+ax^(2 ) )) but we have  by ch. (√a) x = α  (we take a>0)  ∫_0 ^∞    (dx/(1+ax^2 )) =  ∫_0 ^∞     (1/(1+α^2 )) (dα/(√a))  =(π/(2(√a)))  ⇒  f(a) = (π/(2(1−a))) −(a/(1−a)) (π/(2(√a)))  f(a) = (π/(2(1−a)))( 1− (√a) ) ⇒ f(a)= (π/(2(1+(√a)))) .

letputf(a)=0π2dt1+atan2tf(a)=0π2dt1+asin2tcos2t=0π2cos2tcos2t+asin2tdtf(a)=0π21+cos(2t)21+cos(2t2+a1cos(2t)2dt=0π21+cos(2t)1+cos(2t)+a(1cos(2t))dt=0π21+cos(2t)1+a+(1a)cos(2t)thech.2t=ugivef(a)=120π1+cos(u)1+a+(1a)cos(u)duch.tan(u2)=xgivef(a)=1201+1x21+x21+a+(1a)1x21+x22dx1+x2f(a)=02(1+x2)((1+a)(1+x2)+(1a)(1x2)dx=02dx(1+x2)(1+a+(1+a)x2+(1a)+(a1)x2)=02dx(1+x2)(2+2ax2)=0dx(1+x2)(1+ax2)=11a0(11+x2a1+ax2)dxf(a)=π2(1a)a1a0dx1+ax2butwehavebych.ax=α(wetakea>0)0dx1+ax2=011+α2dαa=π2af(a)=π2(1a)a1aπ2af(a)=π2(1a)(1a)f(a)=π2(1+a).

Commented by prof Abdo imad last updated on 22/Mar/18

2) we have proved that   ∫_0 ^(π/2)    (dt/(1+atan^2 t)) =f(a) = (π/(2(1+(√a)))) let derivate  f^′ (a) = −∫_0 ^(π/2)    ((tan^2 t)/((1+a tan^2 t)^2 ))dt ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+a tan^2 t)^2 ))dt =−f^′ (a)  but   f^′ (a) = −(π/2)(((1+(√a))^′ )/((1+(√a))^2 )) ) =−(π/2)  (1/(2(√a)(1+(√a))^2 )) ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+atan^2 t)))dt =  (π/(4(√a)(1+(√a))^2 ))  3) a=2 ⇒  ∫_0 ^(π/2)    ((tan^2 t)/((1+2tan^2 t))) dt =   (π/(4(√(2())1+(√2))^2 )) .

2)wehaveprovedthat0π2dt1+atan2t=f(a)=π2(1+a)letderivatef(a)=0π2tan2t(1+atan2t)2dt0π2tan2t(1+atan2t)2dt=f(a)butf(a)=π2(1+a)(1+a)2)=π212a(1+a)20π2tan2t(1+atan2t)dt=π4a(1+a)23)a=20π2tan2t(1+2tan2t)dt=π42(1+2)2.

Commented by abdo imad last updated on 22/Mar/18

a>0.

a>0.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com