Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 7788 by Chantria last updated on 15/Sep/16

(a_n )_(n∈N)  such that a_1 =(1/2)   and a_(n+1) =(a_n ^2 /(a_n ^2 −a_n +1))  Prove that a_1 +a_2 +a_3 +...+a_n  < 1  need helper

(an)nNsuchthata1=12andan+1=an2an2an+1Provethata1+a2+a3+...+an<1needhelper

Commented by sou1618 last updated on 15/Sep/16

a_1 =(1/2)  a_2 =(((1/2)^2 )/((1/2)^2 −(1/2)+1))=(((1/4))/((3/4)))=(1/3)  ....  ∗prove  a_n <1 (mathematical induction)  when n=1       a_1 =(1/2)<1  when n=k       assume a_k <1  when n=k+1      a_(k+1) =(a_k ^2 /(a_k ^2 −a_k +1))=1+((a_k −1)/(a_k ^2 −a_k +1))      ((a_k −1)/(a_k ^2 −a_k +1))<0 (∵ { ((a_k −1<0)),((a_k ^2 −a_k +1>0)) :})       ⇒a_(k+1) <1  so  a_n <1 (n∈N)  −−−−−−−−−−−−−−−−  a_(n+1) =(a_n ^2 /(a_n ^2 −a_n +1))=1+((a_n −1)/(a_n ^2 −a_n +1))  a_(n+1) −1=((a_n −1)/(a_n ^2 −a_n +1))  (1/(a_(n+1) −1))=((a_n ^2 −a_n +1)/(a_n −1))   (a_n ≠1)  (1/(a_(n+1) −1))=a_n +(1/(a_n −1))  (1/(a_(n+1) −1))−(1/(a_n −1))=a_n     S_n =a_1 +a_2 +...+a_(n−1) +a_n   S_n =((1/(a_2 −1))−(1/(a_1 −1)))+((1/(a_3 −1))−(1/(a_2 −1)))+...+((1/(a_n −1))−(1/(a_(n−1) −1)))+((1/(a_(n+1) −1))−(1/(a_n −1)))  S_n =−(1/(a_1 −1))+(1/(a_(n+1) −1))  S_n =2+(1/(a_(n+1) −1))  S_n =2−(1/(1−a_(n+1) ))  (1/(1−a_(n+1) ))>(1/1) (∵ a_(n+1) <1)  S_n <1

a1=12a2=(1/2)2(1/2)2(1/2)+1=(1/4)(3/4)=13....provean<1(mathematicalinduction)whenn=1a1=12<1whenn=kassumeak<1whenn=k+1ak+1=ak2ak2ak+1=1+ak1ak2ak+1ak1ak2ak+1<0({ak1<0ak2ak+1>0)ak+1<1soan<1(nN)an+1=an2an2an+1=1+an1an2an+1an+11=an1an2an+11an+11=an2an+1an1(an1)1an+11=an+1an11an+111an1=anSn=a1+a2+...+an1+anSn=(1a211a11)+(1a311a21)+...+(1an11an11)+(1an+111an1)Sn=1a11+1an+11Sn=2+1an+11Sn=211an+111an+1>11(an+1<1)Sn<1

Commented by Chantria last updated on 16/Sep/16

nice sir. thanks

nicesir.thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com