Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138524 by mnjuly1970 last updated on 14/Apr/21

             .......advanced ... .... ... calculus.....     I:=∫_((−π)/2) ^( (π/2)) sin^2 (tan(x))dx=^(???) (π/e)sinh(1)

.......advanced..........calculus.....I:=π2π2sin2(tan(x))dx=???πesinh(1)

Answered by Dwaipayan Shikari last updated on 14/Apr/21

∫_(−∞) ^∞ ((sin^2 (t))/(t^2 +1))dt=τ(1)  Knowing ∫_(−∞) ^∞ ((cos(αx))/(x^2 +1))=πe^(−α)   τ(α)=(1/2)∫_(−∞) ^∞ ((1−cos(2αx))/(x^2 +1))dx  =(1/2)(π−πe^(−2α) ) =(π/2)(((e^(2α) −1)/e^(2α) ))  τ(1)=(π/2)(((e^2 −1)/e^2 ))=(π/2)(((e−(1/e))/e))  =(π/e)sinh(1)

sin2(t)t2+1dt=τ(1)Knowingcos(αx)x2+1=πeατ(α)=121cos(2αx)x2+1dx=12(ππe2α)=π2(e2α1e2α)τ(1)=π2(e21e2)=π2(e1ee)=πesinh(1)

Answered by Ñï= last updated on 14/Apr/21

∫_(−π/2) ^(π/2) sin^2 (tan x)dx=∫_(−∞) ^(+∞) ((sin^2 u)/(u^2 +1))du=∫_0 ^∞ ((1−cos 2u)/(u^2 +1))du  =(π/2)−∫_0 ^∞ ((cos 2u)/(u^2 +1))du=(π/2)−ℜ∫_0 ^∞ (e^(i2u) /(u^2 +1))du  =(π/2)−ℜ{πiRes((e^(i2u) /(u^2 +1)),i)}  =(π/2)−(π/(2e^2 ))

π/2π/2sin2(tanx)dx=+sin2uu2+1du=01cos2uu2+1du=π20cos2uu2+1du=π20ei2uu2+1du=π2{πiRes(ei2uu2+1,i)}=π2π2e2

Answered by mathmax by abdo last updated on 15/Apr/21

I=∫_(−(π/2)) ^(π/2)  sin^2 (tanx)dx ⇒I=_(tanx=t)   ∫_(−∞) ^(+∞)  ((sin^2 (t))/(1+t^2 ))dt  =∫_(−∞) ^(+∞)  ((1−cos(2t))/(2(t^2  +1)))dt =(1/2)∫_(−∞) ^(+∞)  (dt/(t^2  +1))−(1/2)∫_(−∞) ^(+∞)  ((cos(2t))/(t^2  +1))dt  =(π/2)−(1/2)Re(∫_(−∞) ^(+∞)  (e^(2it) /(t^2  +1))dt) let w(z)=(e^(2iz) /(z^2  +1)) (=(e^(2iz) /((z−i)(z+i))))  ∫_(−∞) ^(+∞) w(z)dz=2iπ.Res(w,i) =2iπ.(e^(−2) /(2i))=(π/e^2 ) ⇒  I=(π/2)−(π/(2e^2 )) ⇒I=(π/2)(1−(1/e^2 ))

I=π2π2sin2(tanx)dxI=tanx=t+sin2(t)1+t2dt=+1cos(2t)2(t2+1)dt=12+dtt2+112+cos(2t)t2+1dt=π212Re(+e2itt2+1dt)letw(z)=e2izz2+1(=e2iz(zi)(z+i))+w(z)dz=2iπ.Res(w,i)=2iπ.e22i=πe2I=π2π2e2I=π2(11e2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com