All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 138524 by mnjuly1970 last updated on 14/Apr/21
.......advanced..........calculus.....I:=∫−π2π2sin2(tan(x))dx=???πesinh(1)
Answered by Dwaipayan Shikari last updated on 14/Apr/21
∫−∞∞sin2(t)t2+1dt=τ(1)Knowing∫−∞∞cos(αx)x2+1=πe−ατ(α)=12∫−∞∞1−cos(2αx)x2+1dx=12(π−πe−2α)=π2(e2α−1e2α)τ(1)=π2(e2−1e2)=π2(e−1ee)=πesinh(1)
Answered by Ñï= last updated on 14/Apr/21
∫−π/2π/2sin2(tanx)dx=∫−∞+∞sin2uu2+1du=∫0∞1−cos2uu2+1du=π2−∫0∞cos2uu2+1du=π2−ℜ∫0∞ei2uu2+1du=π2−ℜ{πiRes(ei2uu2+1,i)}=π2−π2e2
Answered by mathmax by abdo last updated on 15/Apr/21
I=∫−π2π2sin2(tanx)dx⇒I=tanx=t∫−∞+∞sin2(t)1+t2dt=∫−∞+∞1−cos(2t)2(t2+1)dt=12∫−∞+∞dtt2+1−12∫−∞+∞cos(2t)t2+1dt=π2−12Re(∫−∞+∞e2itt2+1dt)letw(z)=e2izz2+1(=e2iz(z−i)(z+i))∫−∞+∞w(z)dz=2iπ.Res(w,i)=2iπ.e−22i=πe2⇒I=π2−π2e2⇒I=π2(1−1e2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com