All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 137668 by mnjuly1970 last updated on 05/Apr/21
.......advanced............calculus....provethat:::::∗∗∗∗∗Ω=∑∞n=0Γ(n+1)Γ(x+1)(n+1)Γ(n+x+2)=ψ′(x+1)proof::Ω=∑∞n=0β(n+1,x+1)n+1=∑∞n=0{1(n+1)∫01tn.(1−t)xdt}=∫01{(1−t)x∑∞n=0tnn+1dt}=∫01{(1−t)x∑∞n=1tn−1ndt}=−∫01(1−t)xln(1−t)tdt=−∫01txln(t)1−tdt=∂∂x∫011−tx1−tdt=ψ′(1+x).....✓✓.......Ω=ψ′(1+x)......
Commented by Dwaipayan Shikari last updated on 05/Apr/21
∑∞n=0Γ(n+1)Γ(1)(n+1)Γ(n+2)=∑∞n=01n2=π26=ψ′(1)∑∞n=0Γ(n+1)Γ(2)(n+1)Γ(n+3)=∑∞n=11n2(n+1)=π26−1=ψ′(2)...
Commented by mnjuly1970 last updated on 05/Apr/21
grateful..thankyousomuchmrpayan...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com