Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140956 by mnjuly1970 last updated on 14/May/21

          .....advanced......calculus.....       prove that:    𝛗:= ∫_(−∞) ^( ∞) ((sin^4 (x).cos^4 (x))/x^2 )dx=(π/(16))    m.n

.....advanced......calculus.....provethat:ϕ:=sin4(x).cos4(x)x2dx=π16m.n

Answered by mathmax by abdo last updated on 14/May/21

Φ =2∫_0 ^∞  (((sinx.cosx)^4 )/x^2 )dx =(2/2^4 )∫_0 ^∞   ((sin^4 (2x))/x^2 )dx  =(1/8)∫_0 ^∞  (((((1−cos(4x))/2))^2 )/x^2 )dx =(1/(32))∫_0 ^∞   ((1−2cos(4x)+((1+cos(8x))/2))/x^2 )dx  =(1/(64))∫_0 ^∞   ((2−4cos(4x)+1+cos(8x))/x^2 )dx  =(1/(64))∫_0 ^∞   ((4−4cos(4x)−(1−cos(8x)))/x^2 )dx  =(1/(16))∫_0 ^∞  ((1−cos(4x))/x^2 )dx−(1/(64))∫_0 ^∞ ((1−cos(8x))/x^2 )dx  we have ∫_0 ^∞  ((1−cos(4x))/x^2 )dx =_(2x=t)  4 ∫_0 ^∞ ((1−cos2t)/t^2 )(dt/2)  =2∫_0 ^∞ ((2sin^2 (t))/t^2 )dt =4∫_0 ^∞  ((sin^2 (t))/t^2 )  =4{ [−(1/t)sin^2 t]_0 ^∞ +∫_0 ^∞  ((2sint.cost)/t) dt}  =4∫_0 ^∞  ((sin(2t))/t) dt  =_(2t=z)   4∫_0 ^∞  ((sinz)/(z/2))(dz/2) =4.(π/2)=2π  ∫_0 ^∞ ((1−cos(8x))/x^2 ) dx =_(4x=t) 16∫_0 ^∞   ((1−cos(2t))/t^2 )(dt/4)  =4 ∫_0 ^∞  ((2sin^2 t)/t^2 ) dt =8 ∫_0 ^∞  ((sin^2 t)/t^2 ) =8.(π/2)=4π ⇒  Φ =(1/(16))(2π)−(1/(64))(4π) =(π/8)−(π/(16)) =(π/(16)) ⇒Φ=(π/(16))★

Φ=20(sinx.cosx)4x2dx=2240sin4(2x)x2dx=180(1cos(4x)2)2x2dx=132012cos(4x)+1+cos(8x)2x2dx=164024cos(4x)+1+cos(8x)x2dx=164044cos(4x)(1cos(8x))x2dx=11601cos(4x)x2dx16401cos(8x)x2dxwehave01cos(4x)x2dx=2x=t401cos2tt2dt2=202sin2(t)t2dt=40sin2(t)t2=4{[1tsin2t]0+02sint.costtdt}=40sin(2t)tdt=2t=z40sinzz2dz2=4.π2=2π01cos(8x)x2dx=4x=t1601cos(2t)t2dt4=402sin2tt2dt=80sin2tt2=8.π2=4πΦ=116(2π)164(4π)=π8π16=π16Φ=π16

Commented by mnjuly1970 last updated on 14/May/21

    grateful sir max ...thanking

gratefulsirmax...thanking

Terms of Service

Privacy Policy

Contact: info@tinkutara.com