All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 140956 by mnjuly1970 last updated on 14/May/21
.....advanced......calculus.....provethat:ϕ:=∫−∞∞sin4(x).cos4(x)x2dx=π16m.n
Answered by mathmax by abdo last updated on 14/May/21
Φ=2∫0∞(sinx.cosx)4x2dx=224∫0∞sin4(2x)x2dx=18∫0∞(1−cos(4x)2)2x2dx=132∫0∞1−2cos(4x)+1+cos(8x)2x2dx=164∫0∞2−4cos(4x)+1+cos(8x)x2dx=164∫0∞4−4cos(4x)−(1−cos(8x))x2dx=116∫0∞1−cos(4x)x2dx−164∫0∞1−cos(8x)x2dxwehave∫0∞1−cos(4x)x2dx=2x=t4∫0∞1−cos2tt2dt2=2∫0∞2sin2(t)t2dt=4∫0∞sin2(t)t2=4{[−1tsin2t]0∞+∫0∞2sint.costtdt}=4∫0∞sin(2t)tdt=2t=z4∫0∞sinzz2dz2=4.π2=2π∫0∞1−cos(8x)x2dx=4x=t16∫0∞1−cos(2t)t2dt4=4∫0∞2sin2tt2dt=8∫0∞sin2tt2=8.π2=4π⇒Φ=116(2π)−164(4π)=π8−π16=π16⇒Φ=π16★
Commented by mnjuly1970 last updated on 14/May/21
gratefulsirmax...thanking
Terms of Service
Privacy Policy
Contact: info@tinkutara.com