All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 25960 by abdo imad last updated on 16/Dec/17
answerto25955.weintroducetheparametricfunctionF(t)=∫0∞ln(1+(1+x2)t)(1+x2)−1dxafterverifyingthatFisderivableon[0.∝[wefind∂F/∂t=∫0∞((1+(1+x2)t)−1dx∂F/∂t=1/2∫R(tx2+t+1)−1dxweputf(z)=(tz2+z+1)−1letfindthepolesoff..tz2+z+1=0<−>z=+−i((t+1)t−1)1/2andthepolesarez0=i((t+1)t−1)1/2andz1=−i((t+1)t−1)1/2andf(t)=(t(t−z0)(t−z1))−1byresidustheorem∫Rf(z)dz=2iπR(f.z0)=2iπ(t(z0−z1))−1=πt−1/2(t+1)−1/2−>∂F/∂t=π2−1t−1/2(1+t)−1/2−>F(t)=π2−1∫0tx−1/2(1+x)−1/2dx+αα=F(0)=0andF(t)=π2−1∫0tx−1/2(1+x)−1/2dxandbythechangementx1/2=uwefindF(t)=πln(t1/2+(1+t)1/2)so∫0∞ln(2+x2)(1+x2)−1dx=F(1)=πln(1+21/2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com