All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 25821 by abdo imad last updated on 15/Dec/17
answertoq25796findthevalueoff(x)=∫0πln(1+xcosθ)dθwith0<x<1∂f/∂x=∫0πcosθ(1+xcosθ)−1dθ=πx−1−x−1∫0π(1+xcosθ)−1dθandbythechangeenttanθ=uthenthechangementu=((1+x)(1+x)−1).t.wefind∫0θ(1+xcosθ)−1dθ=π(1−x2)−1/2so∂f/∂x=πx−1−πx−1(1−x−1/2)sof(x)=πln(x)−π∫xt−1(1−t2)−1/2dtbut∫xt−1(1−t2)dt=−1.2−1ln((1+(1−x2)1/2.(1−(1−x2)1/2)−1)andf(x)=πln(x)+π.2−1ln((1+(1−x2)1/2((1−(1−x2)1/2)−1+ββ=f(1)=∫0π=ln(1+cosθ)dθ=−πln(2)so∫0π(1+xcosθ)dθ=πlnx+π2−1ln((1+(1−x2)1/2)((1−(1−x2)1/2)−1−πln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com