Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 25821 by abdo imad last updated on 15/Dec/17

answer to q25796 f_ ind the value off(x)= ∫_0^  ^π_  ln(1+xcosθ)dθ with 0<x<1   ∂f/∂x= ∫_0 ^π   cosθ(1+xcosθ)^(−1) dθ=πx^(−1) −x^(−1) ∫_0 ^π (1+xcosθ)^(−1) dθand by the changeent tanθ=u then the changement u=((1+x)(1+x)^(−1^ ) )^  .t.we find  ∫_0 ^θ (1+xcosθ)^(−1) dθ  =π(1−x^2_  )^(−1/2)   so ∂f/∂x=πx^(−1) −πx^(−1) (1−x^(−1/2) ) so f(x)= π ln(x)−π∫^x  t^(−1) (1−t^2 )^(−1/2) dt  but ∫^x t^(−1) (1−t^2 )dt=−1. 2^(−1)  ln((1+(1−x^2 )^(1/2) .(1−(1−x^2 )^(1/2) )^(−1) )  and f(x)=πln(x)+π.2^(−1) ln( (1+(1−x^2 )^(1/2) ((1−(1−x^2 )^(1/2) )^(−1)  +β  β=f(1)=∫_0 ^(π=) ln(1+cosθ)dθ=−πln(2) so  ∫_0 ^π (1+xcosθ)dθ = πlnx +π2^(−1) ln((1+(1−x^2 )^(1/2^ ) )((1−(1−x^2 )^(1/2) )^(−1) −πln(2).

answertoq25796findthevalueoff(x)=0πln(1+xcosθ)dθwith0<x<1f/x=0πcosθ(1+xcosθ)1dθ=πx1x10π(1+xcosθ)1dθandbythechangeenttanθ=uthenthechangementu=((1+x)(1+x)1).t.wefind0θ(1+xcosθ)1dθ=π(1x2)1/2sof/x=πx1πx1(1x1/2)sof(x)=πln(x)πxt1(1t2)1/2dtbutxt1(1t2)dt=1.21ln((1+(1x2)1/2.(1(1x2)1/2)1)andf(x)=πln(x)+π.21ln((1+(1x2)1/2((1(1x2)1/2)1+ββ=f(1)=0π=ln(1+cosθ)dθ=πln(2)so0π(1+xcosθ)dθ=πlnx+π21ln((1+(1x2)1/2)((1(1x2)1/2)1πln(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com