Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107184 by bemath last updated on 09/Aug/20

       @bemath@  ∫_0 ^2  x ((8−x^3 ))^(1/3)  dx =?

@bemath@20x8x33dx=?

Answered by john santu last updated on 09/Aug/20

Commented by john santu last updated on 09/Aug/20

typo 8v = x^3

typo8v=x3

Commented by bobhans last updated on 09/Aug/20

typo the last line : ((16π)/(9(√3)))

typothelastline:16π93

Commented by john santu last updated on 09/Aug/20

haha...thanks

haha...thanks

Answered by 1549442205PVT last updated on 12/Aug/20

  Set (8/x^3 )−1=t^3 ⇒3t^2 dt=−((24)/x^4 )dx  ⇒^3 (√(8−x^3 )) =xt,dx=−((x^4 t^2 dt)/8)   ⇒F=∫((x^2 t.x^4 t^2 )/(−8))dt=−(1/8)∫ t^3 x^6 dt  =((−1)/8)∫t^3 .((8/(1+t^3 )))^2 dt=−8∫(t^3 /((1+t^3 )^2 ))dt  =−8∫((t^3 +1−1)/((1+t^3 )^2 ))dt=−8∫(dt/(1+t^3 ))−8∫(dt/((1+t^3 )^2 ))  (1/(1+t^3 ))=(a/(1+t))+((bt+c)/(t^2 −t+1))⇔(((a+b)t^2 +(b+c−a)t+a+c)/((1+t)(t^2 −t+1)))=(1/(t^3 +1))  ⇔ { ((a+b=0)),((b+c−a=0)),((a+c=1)) :} ⇔ { ((a=1/3)),((b=−1/3)),((c=2/3)) :}  A=∫(dt/(1+t^3 ))=∫(dt/(3(1+t)))−∫(((t−2)dt)/(3(t^2 −t+1)))  =(1/3)lnt−(1/6)∫((2t−1−3)/((t^2 −t+1)))dt=(1/3)lnt  −(1/6)∫((d(t^2 −t+1))/(t^2 −t+1))+(1/2)∫(dt/((t−(1/2))^2 +(((√3)/2))^2 ))  =(1/3)lnt−(1/6)ln(t^2 −t+1)+(1/2)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))  B=(1/((1+t^3 )^2 ))=[(1/3)((1/(t+1))−((t−2)/(t^2 −t+1)))]^2   9B=(1/((1+t)^2 ))−((t^2 −4t+4)/((t^2 −t+1)^2 ))−((2(t−2))/((t+1)(t^2 −t+1)))  =(1/((1+t)^2 ))−((t^2 −t+1−3t+3)/((t^2 −t+1)^2 ))−(2/(t^2 −t+1))+2((1/(t+1))−((t−2)/(t^2 −t+1)))  =(1/((1+t)^2 ))−(1/(t^2 −t+1))+((3(t−1))/((t^2 −t+1)^2 ))−(2/(t^2 −t+1))+(2/(t+1))−((2(t−2))/(t^2 −t+1))  =(1/((t+1)^2 ))+(2/(t+1))+((3(t−1))/((t^2 −t+1)^2 ))−((2t−1)/(t^2 −t+1))  ∫(dt/((1+t^3 )^2 ))=∫((1/((t+1)^2 ))+(2/(t+1))+((3(t−1))/((t^2 −t+1)^2 ))−((2t−1)/(t^2 −t+1)))dt  =∫((d(t+1))/((t+1)^2 ))+2∫((d(t+1))/(t+1))+(3/2)∫((2t−1)/((t^2 −t+1)^2 ))dt−(3/2)∫(dt/((t^2 −t+1)^2 ))−∫ ((d(t^2 −t+1))/(t^2 −t+1))  =−(1/(t+1))+2ln(t+1)−(3/(2(t^2 −t+1)))−ln(t^2 −t+1)−(3/(2(t^2 −t+1)^2 ))  I_2 =∫(dt/((t^2 −t+1)^2 ))=∫((d(t−(1/2)))/([(t−(1/2))^2 +(((√3)/2))^2 ]^2 )).Set u=t−(1/2),a=((√3)/2)  I_2 =∫(du/((u^2 +a)^2 ))=(1/(2a^2 (2−1))).(u/((u^2 +a^2 )^(2−1) ))+(1/a^2 ).((2.2−3)/(2.2−2)).I_1   =(2/3).(u/((u^2 +a^2 )))+(4/3).(1/2)∫(du/(u^2 +a^2 ))  =(2/3).((t−(1/2))/((t^2 −t+1)))+(2/3).(2/( (√3)))tan^(−1) (((2t−1)/( (√3))))  =((2t−1)/(3(t^2 −t+1)))+(4/(3(√3)))tan^(−1) (((2t−1)/( (√3))))  Hence,  9B=((−1)/(t+1))+2ln(t+1)−(3/(2(t^2 −t+1)))−ln(t^2 −t+1)−(3/(2(t^2 −t+1)^2 ))  =((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−3I_2   =((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−((2t−1)/(t^2 −t+1))−(4/( (√3)))tan^(−1) (((2t−1)/( (√3))))  F=−8A−8B=−8[(1/3)lnt−(1/6)ln(t^2 −t+1)+(1/2)×(2/( (√3)))tan^(−1) (((2x−1)/( (√3))))]  −(8/9)[=((−1)/(t+1))−(3/(2(t^2 −t+1)))+2ln((t+1)/(t^2 −t+1))−((2t−1)/(t^2 −t+1))−(4/( (√3)))tan^(−1) (((2t−1)/( (√3))))]

Set8x31=t33t2dt=24x4dx38x3=xt,dx=x4t2dt8F=x2t.x4t28dt=18t3x6dt=18t3.(81+t3)2dt=8t3(1+t3)2dt=8t3+11(1+t3)2dt=8dt1+t38dt(1+t3)211+t3=a1+t+bt+ct2t+1(a+b)t2+(b+ca)t+a+c(1+t)(t2t+1)=1t3+1{a+b=0b+ca=0a+c=1{a=1/3b=1/3c=2/3A=dt1+t3=dt3(1+t)(t2)dt3(t2t+1)=13lnt162t13(t2t+1)dt=13lnt16d(t2t+1)t2t+1+12dt(t12)2+(32)2=13lnt16ln(t2t+1)+12×23tan1(2x13)B=1(1+t3)2=[13(1t+1t2t2t+1)]29B=1(1+t)2t24t+4(t2t+1)22(t2)(t+1)(t2t+1)=1(1+t)2t2t+13t+3(t2t+1)22t2t+1+2(1t+1t2t2t+1)=1(1+t)21t2t+1+3(t1)(t2t+1)22t2t+1+2t+12(t2)t2t+1=1(t+1)2+2t+1+3(t1)(t2t+1)22t1t2t+1dt(1+t3)2=(1(t+1)2+2t+1+3(t1)(t2t+1)22t1t2t+1)dt=d(t+1)(t+1)2+2d(t+1)t+1+322t1(t2t+1)2dt32dt(t2t+1)2d(t2t+1)t2t+1=1t+1+2ln(t+1)32(t2t+1)ln(t2t+1)32(t2t+1)2I2=dt(t2t+1)2=d(t12)[(t12)2+(32)2]2.Setu=t12,a=32I2=du(u2+a)2=12a2(21).u(u2+a2)21+1a2.2.232.22.I1=23.u(u2+a2)+43.12duu2+a2=23.t12(t2t+1)+23.23tan1(2t13)=2t13(t2t+1)+433tan1(2t13)Hence,9B=1t+1+2ln(t+1)32(t2t+1)ln(t2t+1)32(t2t+1)2=1t+132(t2t+1)+2lnt+1t2t+13I2=1t+132(t2t+1)+2lnt+1t2t+12t1t2t+143tan1(2t13)F=8A8B=8[13lnt16ln(t2t+1)+12×23tan1(2x13)]89[=1t+132(t2t+1)+2lnt+1t2t+12t1t2t+143tan1(2t13)]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com