Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107238 by bemath last updated on 09/Aug/20

       ⊞bemath⊞  ∫ ((sin x)/(sin^3 x+cos^3 x)) dx ?

bemathsinxsin3x+cos3xdx?

Answered by john santu last updated on 09/Aug/20

    ⋇JS⋇  ∫ ((csc^2  x )/(1+cot^3 x)) dx = −∫ ((d(cot x))/(1+cot^3 x))  =−∫(dv/(1+v^3 )) [ with v = cot x ]  = −∫ ((1−v^2 )/(1+v^3 )) dv −(1/3)∫ ((d(1+v^3 ))/(1+v^3 ))  =−(1/2)∫ ((1+(1−2v))/(1+v^3 ))dv−(1/3)ln ∣1+v^3 ∣  =−(1/2)∫ (dv/((v−(1/2))^2 +(((√3)/2))^2 )) +(1/2)∫ ((d(1−v+v^2 ))/(1−v))−(1/3)ln  ∣1+v^3 ∣  = −(1/(√3)) arc tan (((2cot x−1)/(√3)))+(1/6)ln  ∣1−cot x+cot^2 x∣−(1/3)ln ∣1+cot x∣  + C

JScsc2x1+cot3xdx=d(cotx)1+cot3x=dv1+v3[withv=cotx]=1v21+v3dv13d(1+v3)1+v3=121+(12v)1+v3dv13ln1+v3=12dv(v12)2+(32)2+12d(1v+v2)1v13ln1+v3=13arctan(2cotx13)+16ln1cotx+cot2x13ln1+cotx+C

Answered by som(math1967) last updated on 09/Aug/20

∫((sinxsec^3 x)/(sec^3 x(sin^3 x+cos^3 x)))dx  ∫((tanx.sec^2 x)/(tan^3 x+1))dx  let tanx=z ∴sec^2 xdx=dz  ∫(z/(z^3 +1))dz  =∫((z^2 +z−z^2 )/((z+1)(z^2 −z+1)))dz  =∫(z/(z^2 −z+1))dz −∫(z^2 /(z^3 +1))dz  =(1/2)∫((2z−1)/(z^2 −z+1))dz+(1/2)∫(dz/((z−(1/2))^2 +(((√3)/2))^2 ))       −(1/3)∫((d(z^3 +1))/(z^3 +1))  =(1/2)∫((d(z^2 −z+1))/(z^2 −z+1)) +(1/2)∫(dz/((z−(1/2))^2 +(((√3)/2))^2 ))   −(1/3)∫((d(z^3 +1))/(z^3 +1))  =(1/2)ln∣z^2 −z+1∣+(1/2)×(2/(√3))tan^(−1) ((z−(1/2))/((√3)/2))   −(1/3)ln∣z^3 +1∣+C  now put z=tanx

sinxsec3xsec3x(sin3x+cos3x)dxtanx.sec2xtan3x+1dxlettanx=zsec2xdx=dzzz3+1dz=z2+zz2(z+1)(z2z+1)dz=zz2z+1dzz2z3+1dz=122z1z2z+1dz+12dz(z12)2+(32)213d(z3+1)z3+1=12d(z2z+1)z2z+1+12dz(z12)2+(32)213d(z3+1)z3+1=12lnz2z+1+12×23tan1z123213lnz3+1+Cnowputz=tanx

Answered by abdomathmax last updated on 09/Aug/20

I =∫  ((sinx)/(sin^3 x +cos^3 x))dx ⇒I =∫ ((sinx dx)/((sinx +cosx)(sin^2 x−cosxsinx +cos^2 x)))  =∫  ((sinx dx)/((sinx +cosx)(1−cosx sinx)))  =∫  (dx/((1+(1/(tanx)))(1−(1/2)sin(2x))))  =∫   ((tanx dx)/((1+tanx)(1−(1/2)×((2tanx)/(1+tan^2 x)))))  =_(tanx =t)     ∫   (t/((1+t)(1−(t/(1+t^2 )))))×(dt/(1+t^2 ))  =∫   ((tdt)/((t+1)(1+t^2 −t))) =∫ ((tdt)/((t+1)(t^2 −t +1)))  let decompose F(t) =(t/((t+1)(t^2 −t+1))) ⇒  F(t) =(a/(t+1)) +((bt +c)/(t^2 −t +1))  a =((−1)/3)   , lim_(t→+∞) tF(t) =0 =a+b ⇒b =(1/3) ⇒  F(t)=((−1)/(3(t+1))) +(((t/3)+c)/(t^2 −t +1))  F(0) =0 =−(1/3) +c ⇒c =(1/3) ⇒  F(t) =−(1/(3(t+1))) +(1/3)((t+1)/(t^2 −t +1)) ⇒  ∫ F(t)dt =((−1)/3)ln∣t+1∣+(1/6)∫ ((2t−1+3)/(t^2 −t+1))dt  =−(1/3)ln∣t+1∣+(1/6)ln(t^2 −t+1)+(1/2)∫(dt/(t^2 −t+1))  ∫  (dt/(t^2 −t+1)) =∫  (dt/((t−(1/2))^2 +(3/4))) =_(t−(1/2)=((√3)/2)u)   =(4/3)∫    (1/(u^2  +1))((√3)/2)du =(2/(√3)) arctan(((2t−1)/(√3))) +C ⇒  I =−(1/3)ln∣t+1∣+(1/6)ln(t^2 −t+1)+(1/(√3)) arctan(((2t−1)/(√3))) +C  =−(1/3)ln∣1+tanx∣+(1/6)ln(tan^2 x−tanx +1)  +(1/(√3)) arctan(((2tanx−1)/(√3)))+C

I=sinxsin3x+cos3xdxI=sinxdx(sinx+cosx)(sin2xcosxsinx+cos2x)=sinxdx(sinx+cosx)(1cosxsinx)=dx(1+1tanx)(112sin(2x))=tanxdx(1+tanx)(112×2tanx1+tan2x)=tanx=tt(1+t)(1t1+t2)×dt1+t2=tdt(t+1)(1+t2t)=tdt(t+1)(t2t+1)letdecomposeF(t)=t(t+1)(t2t+1)F(t)=at+1+bt+ct2t+1a=13,limt+tF(t)=0=a+bb=13F(t)=13(t+1)+t3+ct2t+1F(0)=0=13+cc=13F(t)=13(t+1)+13t+1t2t+1F(t)dt=13lnt+1+162t1+3t2t+1dt=13lnt+1+16ln(t2t+1)+12dtt2t+1dtt2t+1=dt(t12)2+34=t12=32u=431u2+132du=23arctan(2t13)+CI=13lnt+1+16ln(t2t+1)+13arctan(2t13)+C=13ln1+tanx+16ln(tan2xtanx+1)+13arctan(2tanx13)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com