All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 107238 by bemath last updated on 09/Aug/20
⊞bemath⊞∫sinxsin3x+cos3xdx?
Answered by john santu last updated on 09/Aug/20
⋇JS⋇∫csc2x1+cot3xdx=−∫d(cotx)1+cot3x=−∫dv1+v3[withv=cotx]=−∫1−v21+v3dv−13∫d(1+v3)1+v3=−12∫1+(1−2v)1+v3dv−13ln∣1+v3∣=−12∫dv(v−12)2+(32)2+12∫d(1−v+v2)1−v−13ln∣1+v3∣=−13arctan(2cotx−13)+16ln∣1−cotx+cot2x∣−13ln∣1+cotx∣+C
Answered by som(math1967) last updated on 09/Aug/20
∫sinxsec3xsec3x(sin3x+cos3x)dx∫tanx.sec2xtan3x+1dxlettanx=z∴sec2xdx=dz∫zz3+1dz=∫z2+z−z2(z+1)(z2−z+1)dz=∫zz2−z+1dz−∫z2z3+1dz=12∫2z−1z2−z+1dz+12∫dz(z−12)2+(32)2−13∫d(z3+1)z3+1=12∫d(z2−z+1)z2−z+1+12∫dz(z−12)2+(32)2−13∫d(z3+1)z3+1=12ln∣z2−z+1∣+12×23tan−1z−1232−13ln∣z3+1∣+Cnowputz=tanx
Answered by abdomathmax last updated on 09/Aug/20
I=∫sinxsin3x+cos3xdx⇒I=∫sinxdx(sinx+cosx)(sin2x−cosxsinx+cos2x)=∫sinxdx(sinx+cosx)(1−cosxsinx)=∫dx(1+1tanx)(1−12sin(2x))=∫tanxdx(1+tanx)(1−12×2tanx1+tan2x)=tanx=t∫t(1+t)(1−t1+t2)×dt1+t2=∫tdt(t+1)(1+t2−t)=∫tdt(t+1)(t2−t+1)letdecomposeF(t)=t(t+1)(t2−t+1)⇒F(t)=at+1+bt+ct2−t+1a=−13,limt→+∞tF(t)=0=a+b⇒b=13⇒F(t)=−13(t+1)+t3+ct2−t+1F(0)=0=−13+c⇒c=13⇒F(t)=−13(t+1)+13t+1t2−t+1⇒∫F(t)dt=−13ln∣t+1∣+16∫2t−1+3t2−t+1dt=−13ln∣t+1∣+16ln(t2−t+1)+12∫dtt2−t+1∫dtt2−t+1=∫dt(t−12)2+34=t−12=32u=43∫1u2+132du=23arctan(2t−13)+C⇒I=−13ln∣t+1∣+16ln(t2−t+1)+13arctan(2t−13)+C=−13ln∣1+tanx∣+16ln(tan2x−tanx+1)+13arctan(2tanx−13)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com