Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33984 by abdo imad last updated on 28/Apr/18

calculate ∫_0 ^1   (1/x)ln(((1+x)/(1−x)))dx

calculate011xln(1+x1x)dx

Commented by prof Abdo imad last updated on 29/Apr/18

let put  I = ∫_0 ^1  (1/x)ln(((1+x)/(1−x)))dx  I = ∫_0 ^1  (1/x)ln(1+x)dx −∫_0 ^1 (1/x) ln(1−x)dx but we  have ln^′ (1+x)= (1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n ⇒  ln(1+x)= Σ_(n=0) ^∞ (((−1)^n )/(n+1))x^(n+1)  +λ= Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  +λ  λ =0 ⇒∫_0 ^1 (1/x)ln(1+x)dx= ∫_0 ^1  (1/x)( Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )dx  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^1  x^(n−1) dx  = Σ_(n=1) ^∞    (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−( (1/4)Σ_(n=1) ^∞  (1/n^2 ) −Σ_(n=0) ^∞  (1/((2n+1)^2 )))  =Σ_(n=0) ^∞   (1/((2n+1)^2 )) −(1/4) Σ_(n=1) ^∞   (1/n^2 )  = (π^2 /8) −(1/4) (π^2 /6) = ((3π^2 )/(24)) −(π^2 /(24)) =(π^2 /(12))  .let calculate  ∫_0 ^1   (1/x)ln(1−x)dx  we have  ln^′ (1−x) = ((−1)/(1−x)) =−Σ_(n=0) ^∞  x^n  ⇒  ln(1−x) = −Σ_(n=0) ^∞  (x^(n+1) /(n+1))+λ =−Σ_(n=1) ^∞  (x^n /n) +λ  λ=0 ⇒ ∫_0 ^1 (1/x)ln(1−x)dx =−∫_0 ^1  (Σ_(n=1) ^∞  (x^(n−1) /n))dx  =−Σ_(n=1) ^∞   (1/n) ∫_0 ^1  x^(n−1) dx=−Σ_(n=1) ^∞  (1/n^2 ) =−(π^2 /6) ⇒  I = (π^2 /(12)) +(π^2 /6) = ((3π^2 )/(12)) = (π^2 /4)  ★ I =(π^2 /4) ★

letputI=011xln(1+x1x)dxI=011xln(1+x)dx011xln(1x)dxbutwehaveln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1+λ=n=1(1)n1nxn+λλ=0011xln(1+x)dx=011x(n=1(1)n1nxn)dx=n=1(1)n1n01xn1dx=n=1(1)n1n2=n=1(1)nn2=(14n=11n2n=01(2n+1)2)=n=01(2n+1)214n=11n2=π2814π26=3π224π224=π212.letcalculate011xln(1x)dxwehaveln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+λ=n=1xnn+λλ=0011xln(1x)dx=01(n=1xn1n)dx=n=11n01xn1dx=n=11n2=π26I=π212+π26=3π212=π24I=π24

Answered by hknkrc46 last updated on 29/Apr/18

ln (((1+x)/(1−x)))=ln ((((1+x)(1+x))/((1−x)(1+x))))=ln ((((1+x)^2 )/(1−x^2 )))  =ln (((1+x)/(√(1−x^2 ))))^2 =2ln ((1+x)/(√(1−x^2 )))  ∫(1/x)ln (((1+x)/(1−x)))dx=2∫((1+x)/(x(√(1−x^2 ))))dx→ { ((x=cos 2ψ⇒dx=−2sin2 ψdψ)),((x→0,ψ→(π/4)∧x→1,ψ→0)) :}  −2∫(((1+cos 2ψ)sin 2ψ)/(cos 2ψ(√(1−cos^2 2ψ))))dψ=−2∫((2cos^2 ψsin 2ψ)/(cos 2ψsin 2ψ))dψ  =−4∫((cos^2 ψ)/(cos 2ψ))dψ=−4∫((1−sin^2 ψ)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+4∫((sin^2 ψ)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+4∫(((1−cos 2ψ)/2)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+2∫sec 2ψdψ−2∫dψ  =−2∫sec 2ψdψ−2∫dψ=−2∫(dψ/(cos 2ψ))−2∫dψ  =−2∫(dψ/(cos 2ψ))−2∫dψ=−ln ∣sec 2ψ+tan 2ψ∣−2ψ+C  ∫_0 ^1   (1/x)ln(((1+x)/(1−x)))dx=[−ln ∣sec 2ψ+tan 2ψ∣−2ψ]_(π/4) ^0 =−∞

ln(1+x1x)=ln((1+x)(1+x)(1x)(1+x))=ln((1+x)21x2)=ln(1+x1x2)2=2ln1+x1x21xln(1+x1x)dx=21+xx1x2dx{x=cos2ψdx=2sin2ψdψx0,ψπ4x1,ψ02(1+cos2ψ)sin2ψcos2ψ1cos22ψdψ=22cos2ψsin2ψcos2ψsin2ψdψ=4cos2ψcos2ψdψ=41sin2ψcos2ψdψ=4sec2ψdψ+4sin2ψcos2ψdψ=4sec2ψdψ+41cos2ψ2cos2ψdψ=4sec2ψdψ+2sec2ψdψ2dψ=2sec2ψdψ2dψ=2dψcos2ψ2dψ=2dψcos2ψ2dψ=lnsec2ψ+tan2ψ2ψ+C011xln(1+x1x)dx=[lnsec2ψ+tan2ψ2ψ]π40=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com