All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66328 by mathmax by abdo last updated on 12/Aug/19
calculate∫01dt(1+t2)3
Commented by mathmax by abdo last updated on 15/Aug/19
letI=∫01dt(1+t2)3changementt=tanθgiveI=∫0π41+tan2θ(1+tan2θ)3dθ=∫0π4dθ(1+tan2θ)2=∫0π4cos4θdθ=∫0π4(1+cos(2θ)2)2dθ=14∫0π4(1+2cos(2θ)+1+cos(4θ)2)dθ=18∫0π4{3+4cos(2θ)+cos(4θ)}dθ=38π4+12∫0π4cos(2θ)dθ+18∫0π4cos(4θ)dθ=3π32+14[sin(2θ)]0π4+132[sin(4θ)]0π4=3π32+14+0⇒I=3π32+14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com