Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66328 by mathmax by abdo last updated on 12/Aug/19

calculate ∫_0 ^1  (dt/((1+t^2 )^3 ))

calculate01dt(1+t2)3

Commented by mathmax by abdo last updated on 15/Aug/19

let I =∫_0 ^1  (dt/((1+t^2 )^3 )) changement t=tanθ give  I =∫_0 ^(π/4)    ((1+tan^2 θ)/((1+tan^2 θ)^3 ))dθ =∫_0 ^(π/4)  (dθ/((1+tan^2 θ)^2 )) =∫_0 ^(π/4)  cos^4 θdθ  =∫_0 ^(π/4) (((1+cos(2θ))/2))^2 dθ =(1/4)∫_0 ^(π/4) (1+2cos(2θ) +((1+cos(4θ))/2))dθ  =(1/8)∫_0 ^(π/4) {3 +4cos(2θ)+cos(4θ)}dθ  =(3/8)(π/4) +(1/2) ∫_0 ^(π/4)  cos(2θ)dθ +(1/8)∫_0 ^(π/4)  cos(4θ)dθ  =((3π)/(32)) +(1/4)[sin(2θ)]_0 ^(π/4)  +(1/(32))[sin(4θ)]_0 ^(π/4)   =((3π)/(32)) +(1/4) +0 ⇒ I =((3π)/(32)) +(1/4)

letI=01dt(1+t2)3changementt=tanθgiveI=0π41+tan2θ(1+tan2θ)3dθ=0π4dθ(1+tan2θ)2=0π4cos4θdθ=0π4(1+cos(2θ)2)2dθ=140π4(1+2cos(2θ)+1+cos(4θ)2)dθ=180π4{3+4cos(2θ)+cos(4θ)}dθ=38π4+120π4cos(2θ)dθ+180π4cos(4θ)dθ=3π32+14[sin(2θ)]0π4+132[sin(4θ)]0π4=3π32+14+0I=3π32+14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com